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Abstract

A new system is currently being developed to
assist the Dutch National Police in the assess-
ment of crime reports submitted by civilians.
This system uses Natural Language Process-
ing techniques to extract observations from
text. These observations are used in a formal
reasoning system to construct arguments sup-
porting conclusions based on the extracted ob-
servations, and possibly ask the complainant
who files the report extra questions during the
intake process. The aim is to develop a dy-
namic question-asking system which automat-
ically learns effective and user-friendly strate-
gies. The proposed approach is planned to be
integrated in the daily workflow at the Dutch
National Police, in order to provide increased
efficiency and transparency for processing of
crime reports.

Keywords: Argumentation, Information Extraction,
Relation Extraction

1 Introduction

The ideas presented in this paper are part of a a
collaborative initiative of the Dutch National Police
and Utrecht University for developing a framework for
(semi-)autonomous business processes in the police or-
ganization using technologies from text and data ana-
lytics together with computational argumentation and
dialog. One project under the umbrella of this ini-
tiative concerns technologies to improve the intake of
criminal reports submitted by civilians on the topic
of online trade fraud, which concerns cases such as
fake webshops and malicious second-hand traders on
trading platforms (e.g., eBay). Around 40.000 reports
are filed each year, and the legal background for trade
fraud is a single article of the Dutch Criminal Code
(art. 326) and a relatively small set of cases that are
used as legal precedents. This high volume and relative
simplicity of such cases makes them ideal for further
automated processing.

For the case of online trade fraud, the Dutch po-
lice currently collects online-submitted crime reports
using a web interface which requires citizens to fill out
several predefined fields (such as the name of the coun-
terparty, bank account number, etc.) as well as a free
text description of the situation. Using this informa-
tion the police decides to either (a) discard the report
because it does not concern trade fraud, (b) accept
the report and include it in the police database for
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further processing, or (c) ask follow-up questions (by
e-mail) to the complainant in case more information
is needed. In the current situation, human analysts
have to read through all incoming reports and decide
on either (a), (b) or (c). To improve the efficiency of
this assessment, we aim to develop a system that auto-
matically determines the appropriate course of action
given a report.

One way of handling (possible) trade fraud re-
ports is to train an algorithm to automatically deter-
mine which action to take given a complete incom-
ing report. This was explored in previous research
[KSBB17, va18], where classifiers were trained to clas-
sify reports as being of class (a - discard report) or of
class (b - accept report), based on the elements of the
report (address of suspect, trade site that was used,
shallow linguistic features). Given that the data is
highly skewed – only 16% of the incoming reports is
normally discarded by human analysts – the results are
promising, with an F1-score of 67.5% for class discard,
95.2% for class accept and a macro-average F1-score of
80.8%.

One important issue with the above solution is that
for a machine learning classifier it cannot be explained
satisfactorily why a complaint was discarded or ac-
cepted. For example, one important feature that is
used as input for the final classifier FC algorithm is
the output of another classifier WC trained on the
(lemmatized) words of the free text field. The expla-
nation of FC’s decision to accept a report is then, for
instance, that the classifier WC gives a probability of
0.8 to accept, based on the occurrence of certain words
(such as “never” and “tickets”) in the report text. In
a legal or law enforcement application, however, we
need transparent explanations that make sense from
a legal and common-sense perspective, not explana-
tions that are based on certain patterns in the data.
For example, we want to know that the complainant
who filed the report bought tickets from the (suspect)
counterparty, but these tickets were never delivered.

In order to automatically assess trade fraud reports
submitted online, we turn to a combination of sym-
bolic, argument-based reasoning about a case (simi-
lar to [PS96]) and non-symbolic information extrac-
tion techniques that use machine learning. These ex-
traction techniques are intended to find basic observa-
tions such as “this report concerns a ticket for a music
concert”, “money was paid by the complainant to the
counterparty” and “nothing was delivered to the com-
plainant”, and use these observations as premises in
legal arguments to infer that, for example, the report
concerns a possible case of fraud and should therefore
be considered for further processing. Thus, the non-
symbolic algorithms are fine-grained: the basic obser-
vations are closer to sentences in the original report
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Figure 1: Example argumentation graph.

texts, so their occurrence can be explained by exactly
those sentences, and more complex conclusions based
on multiple factors in a case can be checked by means
of the argumentation.

In the rest of this paper, we discuss the concepts of
our intake system. The design and implementation of
the system is part of ongoing research, therefore the
discussion in the current paper is primarily intended
to be conceptual (leaving a full evaluation for future
work). The current discussion is structured as follows:
Section 2 discusses the argumentation theory and in-
ference mechanisms that constitute the basis of the
automated reasoning about fraud. The process of col-
lecting complaint information can be modeled in dif-
ferent ways, which is described in Section 3. One of
the proposed approaches involves a dialog with the
complainant, which requires a question asking policy,
as described in Section 4. As a prerequisite for ar-
gumentative inference, the basic observations need to
be extracted from the input given by the complainant.
For textual input, natural language processing (NLP)
techniques are required for this task. The observations
as used in the graph generally denote a relation be-
tween entities, e.g., a send -relation involving the com-
plainant, the counterparty and a package as relation
elements. The classification of entities and relations is
described in Section 5. Section 7 concludes the paper
and discusses next steps.

2 Argumentation Theory

The Dutch Criminal Code defines fraud as “mislead-
ing through false contact details, deceptive tricks or an
accumulation of lies”. These elements can be traced
back to observations or observable facts collected from
the victim and relevant third parties. Based on the
legal definitions in the Dutch Criminal Code, the rel-



evant case law and knowledge of working procedures
of the police analysts who currently assess the fraud
reports, we have constructed an argumentation theory
about online trade fraud. To construct the argumen-
tation theory, the right balance needs to be found in
the level of detail for observations. On the one hand
we want an observation to be directly observable from
the input document, for instance ‘no mention of pay-
ments occurs in this document’. On the other hand,
observations that are too detailed lead to a large argu-
mentation theory, which is more difficult to construct,
maintain and use in argument inference. We try to
find a balance by interacting with the police-side users
of the system such as the people that handle incoming
complaints. If they think a statement is obvious from
a document then we do not require an argumentation
structure for those statements. Such statements are
candidates for becoming observables. For other state-
ments such as ‘this document concerns fraud’ it is not
immediately obvious and we require some argumen-
tation as to why a crime is committed in that case.
Currently, we work with an argumentation theory of
46 rules and 26 observable facts [Ber18].

The argumentation rules and observables can be
modeled in an argumentation graph, where (sets of)
observations provide support or counter-evidence for
other propositions. A simplified example argumenta-
tion graph is presented in Figure 1. Inference rules
are conjunctive, e.g., ‘if the package is not delivered
and the complainant waited a for reasonable period of
time then the package is not sent’ (R1). The obser-
vation nodes are indicated with a gray background in
Figure 1.

Once the graph is constructed, the observed nodes
are used as input to infer conclusions. As per
ASPIC+ [Pra10] definitions, we use inference trees as
the data structure with which to represent arguments.
An inference tree consists of a set of premises and a
conclusion connected by rules, with possible intermedi-
ate conclusions (which are in turn premises for further
conclusions) in between. For example, in Figure 1,
the inference tree for the conclusion not sent contains
the premises and the conclusion of rule R1, whereas
the inference tree for the conclusion fraud contains all
nodes in the graph. Arguments may attack each other
because of inconsistent conclusions (rebutting attack)
or because a conclusion contradicts a premise of an-
other argument (premise attack). Given a set of ar-
guments and the attack relation, we determine the set
of acceptable arguments by calculating the grounded
extension from Dung’s abstract argumentation frame-
work [Dun95]. The grounded extension contains all
arguments that are conflict-free and that defend them-
selves against any attackers, that is, if argument A
in the grounded extension is attacked by argument B

which is not in the grounded extension, then there is
an argument C in the grounded extension that attacks
B and thus defends A. Other options than grounded
semantics exist, but grounded semantics fit nicely with
the conservative nature of legal processes and can be
computed in polynomial time given the arguments.

Consider for example the situation that a package
has been sent, however the recipient was not at home
and the delivery service issued a note that the pack-
age has been returned to the sender. For the purposes
of the example, assume that the counterparty in fact
has bad intentions (e.g., sending a defective product)
and has used a false address. In this case the proposi-
tions false location, not delivered, waited and paid are
true, but not sent is observed to be false (given the
note from the delivery service). Based on these ob-
servations and the argumentation graph presented in
Figure 1, using a forward chaining algorithm the con-
clusions deception, not sent and fraud can be inferred.
However, the conclusion not sent conflicts with the ob-
servation sent. Therefore not sent and the dependent
conclusion fraud are not in the grounded extension,
which consists of the observation set and the conclu-
sion deception.

When sufficient information is available the argu-
ment inference will result in a stable state1. We say
that a certain conclusion is stable if either A) an argu-
ment for it is included in the grounded extension and
more information does not change this, or B) there
is an argument for the conclusion but this argument
or any other argument for the conclusion can never
be in the grounded extension, or C) no argument can
be made and neither will this be possible with more
information. For instance, consider a case where the
counterparty in the case has refunded the payment to
the complainant. In that case, there is no legal basis
anymore to convict the counterparty of fraud. So if
this proposition is observed for a case, then the sys-
tem can establish that there will never be an argument
for fraud in the grounded extension. The information
necessary to result in a stable state needs to be pro-
vided by the complainant (possibly combined with in-
formation from third parties, such as banks or trade
websites). The interaction with the complainant can
be modeled in different ways, which will be discussed
in the next section.

3 User interaction

As mentioned earlier, the Dutch police currently col-
lects a report (including free text but also predefined
fields for addresses, trade sites, etc.) using a web in-

1Stability is not fully calculated (due to computational com-
plexity). Instead, we deploy a heuristic that runs polynomial in
the number of argument graph edges.



terface. The argumentation system as described in
Section 2 can be based on this document by providing
a conclusion (i.e., fraud or not fraud) if a stable state
is reached, and suggesting to ask follow-up questions
otherwise. Here, the full report document is used as
input to instantiate propositions in the argumentation
graph.

Alternatively, the user interaction model can be
changed into a dialog paradigm. In this case the com-
plainant does not file a report document, but instead
the system guides the complainant through the report-
ing process by asking a number of questions. After
each question the argumentation graph is updated us-
ing the reply of the complainant, and the dialog is fin-
ished when the argumentation reaches a stable state.
The questions can be selected dynamically, such that
the argumentation advances towards a stable state
with each question. This approach is similar to the
current practice for reporting a crime at a police sta-
tion, where a police officer asks a number of questions
in order to fill out a crime report.

Note that, for practical purposes, the two ap-
proaches can be considered as opposite ends of the
same methodology, i.e., providing a complete docu-
ment to the argumentation graph is essentially a dia-
log with a single user response. Similarly, a question
within a multi-step dialog can result in a complex user
response which can be considered a short document.
Regardless of the length of the dialog, the answers
need to be parsed and processed in order to extract
relevant information. This could be avoided by using
closed-form questions with a list of predefined answers
(e.g., ‘Did you receive a package?’, ‘How long did you
wait?’), however such a dialog may prove to be insuf-
ficient for users to explain the details of the situation.

4 Question policy learning

When using a dialog between the system and the com-
plainant, we want the system to get to a stable state
as efficiently as possible. Determining whether a state
is stable consists of hypothesizing over all possible fu-
ture questions. As this is generally infeasible to do, we
turn to machine learning methods to train a question-
ing strategy to approximate an ideal solution.

The policy that is to be learned maps observed
propositions to questions that can be asked or to a
terminating action (accept/reject). The action results
in some response from the user, which consists of new
observations and possibly inferred conclusions (both
propositions) that are added to the already known
propositions. As a result, we may view the state of
the system as a set of propositions and the actions
as non-deterministic transitions between states. If we
model this as a Markov Decision Process, then we can

use Q-learning [Wat89] to train a policy. Note that this
requires the assumption that the answer to a question
is independent of how the current set of propositions is
obtained. For our Q-learning approach we require a re-
ward function. In order to promote efficient dialogs, we
give a small penalty for each action. To promote sta-
bility, we give a high reward for reaching stable states.
Finally, alongside a reward function we need a user
model that realistically provides responses to questions
(the probabilities of transitions in the Markov Decision
Process). To this end we currently work with hand-
written models. When the system is deployed it will
gather user data and then a data-driven model will
replace the initial model.

As an example, using the argumentation graph in
Figure 1, consider the state in which false location is
known to be true and all other propositions are un-
known. Suppose the Q-learning algorithm selects ‘ask
for false website’ as the next action to evaluate. This
question can support deception as a conclusion, how-
ever this conclusion was already supported by false lo-
cation. The new state after asking this question there-
fore has the same reward value as the previous state,
while the penalty is increased by performing the ques-
tion action. This will lead the Q-learning algorithm to
reject this state-action pair as part of the policy, and
to consider alternative actions instead.

5 Extracting entities and relations

As described in Section 3, user input (either from re-
port documents or from dialog responses) needs to be
mapped to propositions in the argumentation graph.
These propositions generally consist of a relation be-
tween relevant entities (people, objects, locations, etc.)
described in the complaint. Various techniques can be
used to extract entities and relations between entities
from text, ranging from dictionary lists and syntactic
patterns to complex parsing algorithms and machine
learning models. For Dutch legal data the Dutch de-
pendency parser Frog [BCD07] can be used for named
entity recognition, for which the performance on le-
gal data is evaluated in previous work ([SBB17]). For
relation extraction the development and evaluation of
automatic methods is an ongoing effort in the current
research project, as described in the remainder of this
section.

In order to use these techniques effectively in a law
enforcement application, the expected result from text
processing should be considered carefully. Given the
domain, for example, knowing whether the victim has
paid the counterparty is essential. However, other in-
formation containing entities (e.g., details of contacts
with other victims) are not relevant for legal reason-
ing. The relevance of certain types of information de-



concept property
residence person name, location, large distance

role: complainant, counterparty,
related, unrelated

send sender, recipient, object
receive indicator of relation

validity: true, false, unclear
type: product, payment, contact, other
roles sender, recipient: complainant,
counterparty, other
object: fake, broken, other

Table 1: Examples of properties of interest for anno-
tation.

termines how data should be collected and processed
in developing entity and relation extraction methods.
This includes a mapping from nodes in the argumenta-
tion graph to entities and relations in the text. How-
ever, other propositions may not be represented di-
rectly in the text, such as the use of a false website. In
such cases, partial information may be present in the
text (e.g., the counterparty operated a website), while
the proposition itself can only be validated after con-
sidering information from a third party (e.g. checking
with the ISP to prove that the website is fake). How-
ever, in both cases the legal definition of the crime (as
expressed in the argumentation graph) is essential for
the development of text processing methods.

6 Data annotation for relation extrac-
tion

As we stated in Section 5, some of the propositions
in the argumentation graph are based on relations be-
tween entities in the crime report documents. We plan
to use supervised machine learning techniques (see for
example [XML+15]) to automatically extract these re-
lations, which has shown to provide high accuracy
for the current dataset in preliminary experiments.
Therefore, crime report documents need to be anno-
tated with the concepts identified in the domain anal-
ysis process. Concepts of interest include residence,
payment and delivery information. Each concept has
a number of associated properties for which annota-
tion could prove useful. These properties are listed in
Table 1.

Residence relations are interesting as they may indi-
cate the deceptive trick in which the fraudster gives a
false address. In that case, we often find in the report
that the actual occupant of the address was an un-
related person who did not know anything about the
advertisement. Furthermore, the address is often in a
remote relation, facilitating the fraudster to (falsely)
promise to send items per mail. To be able to detect
these situations in the future, we annotate the person

We have transferred €100,- to this man on account
number 1234.

Relation: send
Sender: we
Role: complainant
Recipient: this man
Role: counterparty
Object: €100,-
Indicator: transferred
Status: sent (or: ‘not sent’, ‘unclear’)

Figure 2: Example annotated sentence.

name, location, role of the person and large distance
property. In future research the processing of coref-
erential expressions (e.g., the token he to refer to an
earlier mention of John Smith in a document or dialog)
will be addressed.

Payment and delivery information are captured by
send and receive relations. The reason for this is that
the complainant usually only knows one side of the
story: if the complainant intended to buy a product,
he or she typically claims having sent money to the
counterparty without having received the product. We
do not know for sure if the counterparty received the
money and/or sent the product, as there is a possibility
of a delivery or payment failure by a third party. The
send and receive relations are ternary, having a sender,
receiver and object, although some of the entities may
be omitted in the text: for instance, in the sentence
‘I did not receive anything’ the sender is missing. For
the sender and receiver, we annotate the corresponding
character indices and the role (complainant, counter-
party or other). In some complaints, the complainant
reports that he or she received a broken product. This
suggests a civil case instead of a fraud case. There-
fore, we annotate not only the character indices but
also the state of the product. Furthermore, we anno-
tate the word(s) indicating a send or receive relation
and the validity of the relation. An example anno-
tated sentence (translated for illustration purposes) is
provided in Figure 2.

We plan to use the annotations in a classifier that,
given a set of tokens, decides if they are entities in
one of the aforementioned relations. The output of
this classifier can then be mapped to propositions for
the argumentation graph. Such a classifier is intended
to operate on free text input, using simple features
such as the presence of selected keywords as well as
more complex features such as lemmas or grammat-
ical dependency paths. For real-world free text the
computation of these features may be unreliable (e.g.,
as a result of misspellings in the source text) or, even
with reliable features, a real-world example may not
conform to the regularities found in the training set.



However, using a suitable classifier and an appropri-
ate training set size, the model is expected to gener-
alize over irregularities to a certain extent. Moreover,
as mentioned in Section 3, using a dialog component
within the system will provide some context to inter-
pret the results of the relation classifier.

7 Conclusion

In this paper we have described an approach to auto-
matically handling the intake of criminal reports filed
online by citizens. The proposed approach combines
different types of techniques (i.e., natural language
processing, argumentation and Q-learning) to obtain
a system that A) handles natural language, B) pro-
duces arguments for complex conclusions and hence
provides understandable and legally sensible explana-
tions for decisions regarding complaint reports, and
C) is capable of gathering information from its envi-
ronment efficiently by only asking the most relevant
questions to the user and terminating the process if
no more relevant information is to be found.

The algorithms ans implementations presented in
this paper are currently under development and a
number of prototypes are working or nearing comple-
tion. Furthermore, parts of the system, such as au-
tomatically drawing conclusions using the argumen-
tation graph, the named entity recognition and basic
relation extraction, have been implemented in the ex-
isting development systems at the Dutch National Po-
lice.

The techniques developed are generalizable beyond
the domain of online trade fraud. Extending the sys-
tem to other domains will involve a substantial (knowl-
edge) engineering effort: argumentation theories will
have to be built for different domains, and algorithms
for extracting new types of observations will have to
be trained. While our solution thus suffers from the
classical “knowledge engineering bottleneck” that has
hampered knowledge-based systems for decades, we
believe the focus on smaller, relatively simple assess-
ments makes true autonomous systems more feasible.
Furthermore, building and maintaining a small argu-
mentation theory may be more suitable for general IT
personnel at the Dutch Police than training machine
learning algorithms on a new dataset. Finally, the al-
gorithms for entity and relation extraction are aimed
to be as general as possible, with good performance
in different domains. Thus, other tasks and processes
within the police organization can be gradually incor-
porated into the framework.
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