
Neural Educational Recommendation Engine (NERE)

Moin Nadeem
Quizlet, Inc
501 2nd St

San Francisco, CA
moin.nadeem@quizlet.com

Dustin Stansbury
Quizlet, Inc
501 2nd St

San Francisco, CA
dustin@quizlet.com

Shane Mooney
Quizlet, Inc
501 2nd St

San Francisco, CA
shane@quizlet.com

ABSTRACT
Quizlet is the most popular online learning tool in the United
States, and is used by over 2

3
of high school students, and

1
2

of college students. With more than 95% of Quizlet users
reporting improved grades as a result, the platform has be-
come the de-facto tool used in millions of classrooms.

In this paper, we explore the task of recommending suit-
able content for a student to study, given their prior inter-
ests, as well as what their peers are studying. We propose
a novel approach, i.e. Neural Educational Recommenda-
tion Engine (NERE), to recommend educational content by
leveraging student behaviors rather than ratings. We have
found that this approach better captures social factors that
are more aligned with learning.

NERE is based on a recurrent neural network that in-
cludes collaborative and content-based approaches for rec-
ommendation, and takes into account any particular stu-
dent’s speed, mastery, and experience to recommend the ap-
propriate task. We train NERE by jointly learning the user
embeddings and content embeddings, and attempt to pre-
dict the content embedding for the final timestamp. We also
develop a confidence estimator for our neural network, which
is a crucial requirement for productionizing this model.

We apply NERE to Quizlet’s proprietary dataset, and
present our results. We achieved an R2 score of 0.81 in the
content embedding space, and a recall score of 54% on our
100 nearest neighbors. This vastly exceeds the recall@100
score of 12% that a standard matrix-factorization approach
provides. We conclude with a discussion on how NERE will
be deployed, and position our work as one of the first edu-
cational recommender systems for the K-12 space.

Keywords
Recommender Systems, Deep Learning, Education, Quizlet,
Recurrent Neural Networks, Attention

1. INTRODUCTION
Founded in 2005, and used by more than 2

3
of high school

students, Quizlet, Inc. is the largest growing educational
website in the United States [7]. The interactive platform
permits students to learn any given ”set”, or collections of
terms and definitions, in a variety of ways. However, with
over 30 million monthly active users, and 250 million study

sets, it has become nearly impossible for users to sift through
all of the available content. This motivates a need for a sys-
tem that will adapt to a user’s preferences and make rec-
ommendations on what they should study next, given their
prior history.

This is not only motivated from a product perspective, but
also by the rise of personalized learning. As a result of the
rise of personalization in the e-commerce [10], social media
[4], and dating [1], many in education and research have
grown curious about the implications personalized learning
may have upon students.

Personalized learning can be defined as any functionality
which enables a system to unique address each individual
learner’s needs and characteristics. This includes, but isn’t
limited to, prior knowledge, rate of learning, interests, and
preferences. This provides the ability to ensure that each
user’s experience is best optimized for their unique needs
and may save them time that would be otherwise wasted.

For an example that is applicable to Quizlet, one user
may prefer to study content suitable to study with Spell
Mode (where students practice spelling by typing the spo-
ken word). Our algorithm would take that into account
by biasing recommendations that are commonly studied in
Spell Mode. Similarly, we may expect our algorithm to take
user performance into account, and continue to recommend
topics that the user hasn’t quite mastered yet.

The main contribution of this paper is a deep learning
based system that provides personalized recommendations
to Quizlet users, answering the question ”What should I
study next?”.

The rest of this paper is structured as follows: a sum-
marization of previous literature for (educational) recom-
mender systems is provided in Section 2. Section 3 provides
an overview of our system architecture, model architecture,
and dataset construction. We continue with a qualitative
and quantitative assessment of our system in Section 4. Fi-
nally, we conclude our paper and provide a direction for
future work in Section 5.

2. BACKGROUND
Recommender Systems are a widely studied field, with

contributions from major players such as Netflix [6], Google
[4], and Amazon [10]. The vast majority of these methods
use matrix factorization techniques to decompose a user’s
preferences matrix, and an item ratings matrix into a latent
space that represents how a user may rate a new item; this
latent space is commonly derived from an Alternating Least
Squares (ALS) algorithm.

Copyright © CIKM 2018 for the individual papers by the papers'

authors. Copyright © CIKM 2018 for the volume as a collection

by its editors. This volume and its papers are published under

the Creative Commons License Attribution 4.0 International (CC

BY 4.0).

However, we believe that matrix factorization approaches
aren’t well suited for educational applications. To begin,
the user-set matrix is extremely sparse. This makes stan-
dard matrix factorization based methods infeasible. These
methods are also ill suited to material that is sequenced with
temporal dependencies, as is usually the case for educational
material.

Instead, we attempt to make the problem computationally
tractable by recurrent neural networks and set vectorization,
which are able to learn both temporal dependencies and a
dense representation of our data respectively. The rest of
this section serves to summarize the current state of deep
neural networks with respect to both the current state of
recommender systems, as well as Technology Enabled Learn-
ing (TEL). We rely heavily upon previous contributions from
the intersection of the two fields: Recommender Systems for
Technology Enabled Learning (RecSysTEL).

2.1 Literature Review
Most recently, Tang & Pardos [17] are the only other re-

searchers in the RecSysTEL field who have explored the use
of Recurrent Neural Networks (RNNs) for the purposes of
personalization in learning. Their work leveraged RNNs to
model navigational behaviors throughout Massively Open
Online Courses (MOOCs). This research was conducted
with the explicit intention of accelerating or decelerating
learning as a result of performance in a given subject; the
benefit to the user is a reduction in learning time and/or
increased performance.

We believe that this work is quite notable due to the level
of detail included in the model. Interactions as fine-grained
as video pauses and changing video speed are included in
the model as a proxy for mastery. However, Tang & Pardos’
algorithm was purely collaborative, and never leveraged the
content of the MOOC(s) studied. We believe that this is an
underexplored field in RecSysTEL, and aim for this to be a
major contribution of our work.

Outside of the field of education, Covington, Adams, and
Sargin [4] at YouTube have developed the first recommenda-
tion system used in an industry setting that leverages deep
neural networks.

Covington et al.’s paper is interesting for two reasons.
First, it demonstrates a successful use of a neural recom-
mendation system at scale, thus mitigating any concerns
about scaling such a system in production. Secondly, videos
are quite analogous to Quizlet sets: both videos and sets
represent ways to learn about topics, and may be episodic
in nature.

To provide an example, if a user watched ”Full House
Episode 1” on YouTube, a good recommendation would be
”Full House Episode 2”. Likewise, a good recommendation
for a user who studied ”Hamlet Chapter 1” would be ”Ham-
let Chapter 2”. In order to generate recommendations such
as these, Covington et al. added search tokens as a feature
to their network.

In order to deal with the vast swaths of YouTube videos,
Covington et al. split their network into two sub-networks.
One network served to filter a large corpus of videos into
those which the user may be interested in, and the second
network (with access to many more features than the first)
served to rank these candidates. Finally, their algorithm was
both content-based and collaborative, demonstrating the vi-
ability of a hybrid approach.

However, one major drawback of their method is the level
of compute with which Google provides Covington et al.
This creates a challenge for us in creating a neural recom-
mendation system while remaining within realistic compu-
tational resources.

3. METHODS
In this section, we provide an overview of how we con-

structed our dataset, what our production system architec-
ture will be, as well as how NERE is architected in detail.

3.1 Dataset Construction
In order to train NERE, Quizlet, Inc. assembled a pro-

prietary dataset. Internally, we use Google BigQuery [14]
for all of our data warehousing needs. From BigQuery, we
assembled two datasets from our activity logs: one which
detailed our users and their respective metadata, and the
second which detailed all sets studied by these users, and
their respective metadata.

The users dataset contained the following fields:

Field Purpose
User ID Uniquely mapping a row to a user.
Study Date Bias the model to recommend newer content.
Obfuscated IP Address Geo lookup to derive latitude, and longitude for locality.
Preferred Term Lang Most common language to study terms in.
Preferred Def Lang Most common language to study definitions in.
Preferred Platform Most common platform (Web, iOS, etc) to study on.
Beginning Timestamp Timestamp for when the study session started.
Ending Timestamp Timestamp for when the study session ended.
Set ID The set they studied during their session.
Session Length The number of minutes that their study session lasted.

Table 1: Table 1 contains information about all of
our users and their metadata.

The sets dataset contained the following fields:

Field Purpose
Set ID Uniquely mapping each set to a row.
Terms All terms in a set as a space-delimited string.
Definitions All definitions in a set as a space-delimited string.
Studier Count Number of unique users that have studied this set.
Broad Subject A high-level subject classification of the set.
Mean Studier Age The average age of the users who study the set.
Term Language The language that terms are in.
Definition Langage The language that definitions are in.
Total Views The total number of views that this set has received.
Has Images Indicating whether this set contains images.
Has Diagrams Indicating whether this set contains diagrams.
Preferred Study Mode The most common study mode used with this set.
Preferred Platform The most common platform (Web, iOS, etc.) used.
Mean Session Length The average session length for this set, in minutes.

Table 2: Table 2 contains information about all of
the sets and their metadata.

Once the datasets were assembled, we began cleaning the
data. Since user privacy is quite important to Quizlet’s val-
ues, we removed all users below the age of thirteen, and ob-
fuscated Internet Protocol (IP) addresses by dropping the
last octet. We believe that this is an important step to-
wards preserving anonymity while still preserving quality
recommendations.

All categorical variables, such as term language, were mapped
to integers. All continuous variables were scaled between
zero and one (with unit variance) to ensure smooth gradi-
ents. We replaced any missing continuous values with the
mean of the dataset. Lastly, we mapped all IP addresses

to their respective latitude and longitude, with the intuition
that students in close proximity may be studying similar
sets.

Finally, a preliminary test of NERE with this dataset
found it difficult to model students who were studying for
multiple classes on Quizlet. Intuitively, this makes sense,
as the recurrent neural network is looking for temporal re-
lations in places where these relations were murky at best.
We solve this by separating sequences by their broad sub-

ject1 column. This was done in practice by concatenating
each User ID with the subject they studied, ensuring each
row is unique in both user and subject classification. After
cleaning, we were left with 1,616,004 unique user-subject
combinations to be fed into our model.

To vectorize our Words and Definitions, we took the space-
delimited string and removed stopwords and non-ASCII char-
acters. Next, we tokenized it and trained 128-dimensional
GloVe embeddings, which effectively creates an implemen-
tation of Set2Vec[12]. These embeddings were concatenated
along with the preprocessed set metadata to create our set
vectors.

Finally, we transformed our dataset into a timeseries for-
mat by concatenating all user study sessions into a single
axis and sorting by ending timestamp. We chose a session
length of 5 timesteps, since 90% of our users have at least
five sessions. The dimensions of the resultant datasets are
as follows:

• User Metadata: (1616004, 5, 13)

• Set Metadata: (1616004, 5, 12)

• Set Content Vectors: (1616004, 5, 128)

3.2 System Architecture
For deployment purposes, we have the following system

architecture.

Figure 1: This figure depicts how our model is used
to serve recommendations in production.

Quizlet uses Apache Airflow [16], the industry standard
for Extract-Transform-Load (ETL) pipelines, to schedule
jobs. Every week, Apache Airflow reads datasets from Big-
Query. Within Airflow, this dataset is preprocessed, and
sent to TensorFlow. TensorFlow predicts which sets the user
should study next, and sends the embedding back to Airflow.
Airflow maps the vectors to sets by determining the N near-
est neighbors of this embedding, and subsequently caches
these recommendations to spanner. Finally, our web server

1The broad subject field was of the following enumerated
type: Theology, History, Uncommon Languages, Commu-
nications, Formal sciences, Visual Arts, Social Sciences,
Applied Sciences, Vocabulary, German, Performing Arts,
Sports, French, Reading Vocabulary, Spanish, Natural Sci-
ences, and Geography.

reads these recommendations from Spanner when serving
content. Figure 1 depicts this flow visually.

Our web server reads from this cache when serving user
content. Since the model takes 2ms to predict on each user
with a CPU, we have opted to use a CPU-backed instance
rather than a GPU-backed instance due to infrastructure
cost.

3.3 Algorithm
In this subsection, we first introduce a formalization of

our set-based recommendation task. Then, we describe our
proposed NERE model architecture in detail.

Session-based recommendation is the task of predicting
what a user would like to study next when their previous
history and metadata are provided.

We let X = [s1, s2, s3, ..., sn−1, sn] be a study session,
where si ∈ S (1 ≤ i ≤ n), n is the input length, and S
represents the pool of study sessions. We learn a function

fŴ (·) such that for any given set of n prefixes, we get an

output Y = fŴ (X).
Since our recommender will need to predict several states

[s0n+1, s
1
n+1, ..., s

m
n+1] for the (n + 1)th timestep, where m is

the number of recommendations desired, we must be able
to derive several Quizlet sets from Y . We let Y be a 128-
dimensional vector that represents the content for a Qui-
zlet set and perform NNDescent [5] for a fast, approximate
m-nearest neighbors search algorithm on Y . We find that
this provides an efficient manner to recommend multiple sets
while maintaining a dense representation for the model to
learn.

3.4 Model Architecture
Our model consists of 56 layers, 22 of which are inputs to

the model. Figure 2 depicts a portion of our model archi-
tecture.

In our architecture, we employ quite a few non-standard
layers popular in Natural Language Processing. The remain-
der of this subsection will be explaining these layers.

3.4.1 Embedding Layer
In order to provide a dense representation for our categor-

ical variables, we trained a embedding matrix [11].
Each categorical variable Ci ∈ C, where C is the set of

categorical variables, was mapped to a 32-dimensional rep-
resentation. This was done with the explicit intention that
the model may learn a spatial relation for some of these
variables.

Each category cj ∈ Ci (1 ≤ j ≤ |Ci|) is learned using the
following table:

LTW i(j) = W i
j (1)

Where W i ∈ R32×|Ci|, |Ci| represents the number of cat-
egories in Ci, and W i

j is the jth column of matrix W i that
represents the 32-dimensional vector corresponding to cat-
egory cj . It is important to note that the entirety of this
matrix is randomly initialized, and the vectors are learned
jointly through backpropagation.

3.4.2 Bidirectional Layers
Bidirectional Layers [15] are commonly utilized to help

models learn sequences.
The intuition behind bidirectional layers is that it helps

recurrent layers learn sequences by making the context more

Figure 2: This figure provides a slice of our model
architecture; some inputs have been excluded for
brevity.

explicit. It splits a recurrent layer into a part that is respon-
sible for learning the input normally, and another part that
is responsible for learning the input backwards; this helps
the model understand what may happen in the future.

Formally, given some study sequence x1, x2, x3, ..., xn−1, xn,
it would feed [(x1, xn), (x2, xn−1), ..., (xn, x1)] as the input.
At first sight, one would believe that this leaks information;
however, humans do precisely the same by inferring future
states from previous experience.

3.4.3 Attention With Context
Based off of the work of Yang et al., Attention With Con-

text is a mechanism that helps the model learn which fea-
tures are important, and which ones may be discarded. As
the name may imply, it helps the model pay attention.

Formally, we add a new layer that performs the following
operation. We assume that i is the ith timestamp in our
input, and t is the tth element in the vector i. Lastly, hit

is the output of the ith element of the tth timestamp in
the layer that precedes our attention layer. The following
equations describe the operations of the Attention layer:

uit = tanh(Wwhit+ bw) (2)

αit =
exp(uiuw)∑
t exp(uituw)

(3)

si =
∑
i

αithit (4)

Where uw is a learned feature-level attention vector, Ww

are the weights of the attention layer, and αit is a weighted
tth element of the ith vector. Intuitively, this implemen-
tation makes a lot of sense: the model is computing how
important each feature in each timestep is against all other
features in the same timestep, and re-weighing the input ac-
cordingly. All weights in this layer are randomly initialized
and jointly learned throughout the training process.

3.4.4 Miscellaneous Features
While most other works have used Long-Short Term Mem-

ory (LSTM) [8] cells for their recurrent unit, we chose to
use Gated Recurrent Unit (GRU) [2] cells. As Chung, et al.
show in [3], for short sequences, GRU cells commonly are
more practical due to not having an internal memory. We
saw a noticeable speed up of more than 20% when using a
GRU cell over an LSTM.

In order for these models (over 5,994,444 learnable pa-
rameters) to generalize, we had to apply some strict regu-
larization. We applied 50% dropout on layers following a
recurrent cell, and applied 0.001 L2 regularization on the
recurrent kernel itself. Furthermore, we used batch nor-
malization to ensure that our inputs are zero-centered with
normalized variance. Following the results of Santurkar et
al. [13], we also noticed faster training times as a result of
these smoother gradients.

4. RESULTS
In this section, we evaluate NERE from a qualitative and

quantitative perspective. We compare our model against a
baseline matrix factorization approach, and analyze several
variations of the model for the purposes of introspection.

Table 3 shows the qualitative results of our recommen-
dation system. The studied column shows the set that the
user studied, while the recommendation column shows the
set that was recommended for the user to study. For this
particular recommendation, our system understands that a
student had been learning about discussing time (in terms
of days of the week) in French, and recommended a corre-
sponding set about months of the year. This shows that the
model understands that the user is learning about temporal
relations. On a higher level, this demonstrates a level of un-
derstanding of both the content that a user desires to learn
and the difficulty at which he desires to learn it.

We use two proxies to assess model accuracy: recall@100
and R2. In order to compute recall@100, we take the 100
nearest neighbors of our output embedding, and check if the
set that the learner studied at timestep Tn+1 is in the set
of nearest 100 neighbors. If it is, we mark that recommen-
dation as correct; otherwise, it is incorrect. We use the 100
nearest neighbors due to the density of our embedding space,
as well as the fact that many of the sets in our embedding
space are near-duplicates due to a lack of canonicalization.

We use R2 to assess whether the predictions in the em-
bedding space match the actual distribution; this serves as a
sanity check to ensure that our model’s output distribution
is correlated to the expected distribution.

Recommendation Results
Studied Recommendation

Term Definition Term Definition
lundi Monday au printemps spring
mardi Tuesday en été summer

mercredi Wednesday Les mois the months
jeudi Thursday Janvier January

vendredi Friday Février Febuary
samedi Saturday Mars March

dimanche Sunday Avril April
un an a year Mai May

une année a year Juin June
aprés after Juillet July
avant before Aoút August

aprés-demain the day after tomorrow Septembre September
un aprés-midi an afternoon Octobre October
aujourd’hui today Novembre November

demain tomorrow Décembre December
demain matin tomorrow morning Quand When

demain aprés-midi tomorrow afternoon Oú Where
demain soir tomorrow night Comment How

hier yesterday Avec qui With whom

Table 3: Table 3 shows the results of our recommen-
dation system.

4.0.1 Comparison Against Matrix Factorization
We compare the performance of NERE against that of

TensorRec [9], a library written by James Kirk that uses
the Tensorflow API. TensorRec accepts a user matrix, item
matrix, and interactions matrix as inputs, and formulates
a predictions matrix as an output. For the user matrix,
we provide the user metadata matrix that NERE is pro-
vided. We concatenate the set vectors and set metadata,
and this represents the item matrix. Lastly, we create an in-
teractions matrix of dimensions (|USERS|, |SETS|), where
some (i, j) = 1 if user i studied set j.

We trained TensorRec on this dataset, and it obtained
a Recall@100 of 0.12 after convergence. We believe this
validates our belief in a core difference between a matrix
factorization approach and our approach: even after exten-
sive customization, an approach based off of temporal data
is much more likely to provide quality recommendations for
educational content.

4.0.2 Input Sequence Length
Our NERE model is based off of the assumption that a

user is purposefully selecting sets to study, and topically
related to a greater theme. This permits us to also believe
that the sets are temporally related, and therefore, enables
us to use a recurrent neural network.

Figure 3 validates this assumption by comparing model
performance against the input sequence length. We see that
the R2 score slowly converges, but that the recall@100 met-
ric steadily increases until our fourth input sequence. This
implies that there may be performance advantages to be ob-
tained by increasing the length of the input sequence past
four. However, since we begin to lose a significant number
of users in our dataset if we extend beyond five timesteps,
we risk creating a model that will not generalize to our en-
tire userbase. As a result, we believe that five timesteps is a
good balance between desired accuracy and generalizability.

4.0.3 Where’s the Attention
One popular use of attention in deep neural networks is

to visualize the model’s understanding of the input. Figure

Figure 3: This figure visualizes how the length of
the input may affect model performance.

Figure 4: This figure visualizes the model’s internal
attention vector.

3 visualizes how the model pays attention to the input, as
well as how it learns the attention vector over time. Brighter
rectangles indicate that more attention is being placed on
those blocks.

These results show incredible insight into the decision pro-
cess of the model. We can see that at the beginning of the
input, the model focuses on the metadata; aspects such as
term and definition language are deemed incredibly impor-
tant. However, as time goes on, the attention shifts from set
and user metadata towards content-based features. We see
that the attention in the very last timestep shifts towards
the content, which aligns with our expectations.

4.0.4 A Purely Content/Collaborative Approach
Next, we try and understand how important our features

are to the model.
We train and test two variations, with and without the

128-dimensional content vectors, to see how important a
content-based approach is for NERE. The impacts of these
variations are demonstrated in Table 4.

Both Content Metadata

R2 0.81 0.78 0.55
Recall@100 0.54 0.38 0.001

Table 4: Table 4 demonstrates the importance of
our content vectors.

This shows that a hybrid (both collaborative and content-
based) is clearly superior over either one independently. It
is important to notice that a content-based approach will
obtain a high R2 score, since it is easy for the model to

learn the underlying distribution, but will not recommend
the appropriate set. This demonstrates the importance of
various collaborative features that we explicitly include.

For example, the nearest neighbor for a set whose term
and definition languages are in Spanish, is actually a set
whose term and definition languages are in German. How-
ever, the model will continue to recommend sets with term
and definition languages in German, since it has learned this
from a user’s prior history. This speaks to the importance
of collaborative features in NERE.

On the whole, we have shown that NERE provides qual-
ity recommendations with which we can provide a deeply
personalized experience for learning, and believe this results
exceed expectations for our application.

5. CONCLUSION & FUTURE WORK
In this work, we have proposed Neural Educational Rec-

ommendation Engine (NERE) to address the problem of
personalized sequential recommendation in the Technology
Enabled Learning (TEL) domain. By leveraging both content-
based and collaborative features, our model can capture
temporal trends in a user’s history, and provide recommen-
dations as to what they should learn next. By incorporat-
ing features such as attention and bidirectionality into our
model, we were able to achieve a state of the art recall@100
score of 0.54. Moreover, we have performed an analysis of
our model and have shown that it outperforms both a stan-
dalone content-based and collaborative approach. Lastly, we
have shown that our model is learning from both the user
and set metadata, in addition to content, by visualizing the
attention mechanism.

As to future work, we believe there is significant work left
to be done in ranking the suggestions; there are significantly
better ways to choose sets from a candidate pool than to rec-
ommend the N closest neighbors. Furthermore, we believe
that an attempt at canonicalizing similar sets would increase
the Recall@100 metric, and should be explored.

6. ACKNOWLEDGEMENTS
First and foremost, I would like to thank my mentors

Dustin Stansbury and Shane Mooney for the exceptional
support and mentorship throughout this project. Both of
them were supportive, answered my many questions, and
were quite open to letting me explore. Shane, thank you
for providing much needed practical wisdom, for reviewing
countless pull requests, and for providing much needed com-
mentary on this paper. Dustin, thank you for the incredible
knowledge about all things machine learning. This project
wouldn’t have been possible without you two.

I would also like to acknowledge Alex Pinchuk and Shaun
Mitschrich for providing endless platform support through-
out this project, including honoring my numerous requests
for more compute.

Lastly, I would like to acknowledge the fabulous Qui-
zlet team who provided incredible companionship through-
out this summer, as well as my parents for supporting me
throughout this process.

Keep on learning!

7. REFERENCES
[1] L. Brozovsky and V. Petricek. Recommender System

for Online Dating Service. 2007.

[2] K. Cho, B. van Merrienboer, D. Bahdanau, and
Y. Bengio. On the Properties of Neural Machine
Translation: Encoder-Decoder Approaches. 2014.

[3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio.
Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. pages 1–9, 2014.

[4] P. Covington, J. Adams, and E. Sargin. Deep Neural
Networks for YouTube Recommendations. Proceedings
of the 10th ACM Conference on Recommender
Systems - RecSys ’16, pages 191–198, 2016.

[5] W. Dong, C. Moses, and K. Li. Efficient k-nearest
neighbor graph construction for generic similarity
measures. Proceedings of the 20th international
conference on World wide web - WWW ’11, page 577,
2011.

[6] C. A. Gomez-Uribe and N. Hunt. The Netflix
Recommender System. ACM Transactions on
Management Information Systems, 6(4):1–19, 2015.

[7] Hillá Meller. SimilarWeb Digital Visionary Awards:
2015, 2015.

[8] S. Hochreiter and J. Urgen Schmidhuber. Long
Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

[9] J. Kirk. TensorRec: A Recommendation Engine
Framework in TensorFlow, 2017.

[10] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[11] D. López-Sánchez, J. R. Herrero, A. G. Arrieta, and
J. M. Corchado. Hybridizing metric learning and
case-based reasoning for adaptable clickbait detection,
2017.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Distributed representations of words and hrases and
their compositionality. In NIPS, 2013.

[13] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How
Does Batch Normalization Help Optimization? (No, It
Is Not About Internal Covariate Shift). 2018.

[14] K. Sato. An Inside Look at Google BigQuery. White
Paper, Google Inc, 2012.

[15] M. Schuster and K. K. Paliwal. Bidirectional recurrent
neural networks. IEEE Transactions on Signal
Processing, 1997.

[16] D. P. Takamori. Apache Airflow, 2016.

[17] S. Tang and Z. A. Pardos. Personalized Behavior
Recommendation. Adjunct Publication of the 25th
Conference on User Modeling, Adaptation and
Personalization - UMAP ’17, (July):165–170, 2017.

