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Abstract. This paper discusses how to extend cognitive models with an explicit 
interaction model. The work is based on the Standard Model of Cognitive Ar-
chitecture which is extended by an explicit model for (spoken) interactions fol-
lowing the Constructive Dialogue Modelling (CDM) approach. The goal is to 
study how to integrate a cognitively appropriate framework into an architecture 
which allows smooth communication in human-robot interactions, and the start-
ing point is to model construction of shared understanding of the dialogue con-
text and the partner’s intentions. Implementation of conversational interaction is 
considered important in the context of social robotics which aim to understand 
and respond to the user’s needs and affective state. The paper describes integra-
tion of the architectures but not experimental work towards this goal. 

Keywords: Human-robot interaction, cognitive architecture, constructive dia-
logue models.  

1 Introduction 

The robot agent’s communication capability can be regarded as one of the fundamen-
tal enablements in cognitive robotics. Given the need for collaboration and coordina-
tion of actions with the other partners as well as the agent’s self-motivated exploration 
of the environment, it is necessary to be able to communicate one’s intentions, beliefs, 
and desires, and for this, language is the most natural means due to its rich expressive 
capabilities. In HRI, action possibilities for a human are determined by the dialogue 
design and the models for processing inputs and generating responses, as well as by 
the natural language capability which allows an intuitive way to interact with the ro-
bot agent. In fact, considering the general notion of affordance, the robot’s language 
capability can be said to afford intuitive interaction which is considered more usable 
than simple command-based protocols [8].  

Affordance was originally introduced by [6] to explain human visual capability to 
recognize objects, and it was transferred to interface design by [19], and finally, to 
human-computer/robot interaction by [8], to describe the capability of a (computer) 
interface to readily suggest the appropriate way of behaviour. Affordance has also 
been used for robot architectures [15][17] to model action possibilities for a user who 
wishes to interact with a robot.  
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In the case of social robots, the use of natural language takes the interaction to a 
qualitatively different level and supports the robot’s autonomous agent-like behaviour 
with dialogue features such as turn-taking, feedback, and creation of common ground. 
Natural dialogue interface is thus a more complex and technologically demanding 
design task than simply adding speech modality to the interface, and it presupposes a 
different frameset for the human user. In general, users tend to assign anthropo-
morphic features to inanimate objects like personal computers even though the objects 
are basically considered tools with no natural interaction capability [23]. Social ro-
bots, however, have a dual character as a tool and as an interacting agent [9], so the 
human-robot interaction starts to resemble human-human communicative situations. 

As argued in [8], speech creates expectations for the system’s ability to conduct 
natural language communication, and humanoid robots reinforce such expectations 
with their human-like appearance, including aspects like personality [21] and even 
stereotypical roles and gender [25]. The need for natural language interaction and 
affordable interfaces thus involves dialogue modelling concerning language analysis 
and interpretation, and the robot agent should also be able to understand multimodal 
sensory information that it receives from its environment. Conversely, it should be 
able to produce behaviour that matches requirements of a relevant and coherent re-
sponse, combining spoken language and multimodality (gestures, gaze, body posture). 
An important aspect of this work is to design a dialogue architecture which supports 
natural interaction and allows experimentation with various multimodal modules so as 
to explore human experience with humanoid robots and address larger societal needs 
to find new ways to improve the robot agents’ acceptance and usability in society.  

In this paper, the discussion focuses on the architecture that supports these re-
quirements. Section 2 briefly describes the Constructive Dialogue Model and the 
Standard Model of Cognitive Architecture. Section 3 shows the intended integration 
of the models, and Section 4 provides short discussion of the topics and future work. 

2 Architectures for Cognitive Robots 

2.1 Constructive Dialogue model 

The Constructive Dialogue Model (CDM) [8] is a complementary architecture to 
cognitive architectures (ACT-R, Soar, Standard Model [13]) which do not explicitly 
concern dialogue communication. CDM can be implemented on top of the cognitive 
perception-action modules as a component responsible for the higher-level reasoning 
on verbal and multimodal communication. It is chosen because of its focus on natural 
language dialogues and because of its links to cognitive aspects of interaction (com-
municative enablements). Also, it has been used in robot applications [12][27].  

CDM is a conceptual and operational framework which regards conversational in-
teractions as cooperative activities through which the interlocutors build common 
ground (cf. similar approaches in [4][20][26]). In CDM, the participants are regarded 
as rational agents, engaged in cooperative activity within which they aim to achieve 
their communicative goals using dialogue acts which convey information about their 
intentions and task topics. The agents exchange new information on the relevant top-
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ics in order to construct mutual understanding and coordinate their actions (see [10] 
for dialogue management issues in general). 

Figure 1 shows how conversations progress in a cyclic manner as the participants 
produce utterances and check various enablements for communication [1] to maintain 
interaction and monitor its progress. For instance, the agents must be in contact and 
aware of the partner’s attempt to communicate, by paying attention to (multimodal) 
signals that indicate their willingness to interact [5]. The agents must also perceive the 
emitted vocal and visual signals as communicative signals, i.e. recognize them having 
been produced with an intention to convey meaning. The agents must also intend to 
engage themselves in the communication, i.e. make an effort to understand the part-
ner’s message and intentions, and to produce their own reaction. Reaction encodes 
new information about the agent’s current viewpoint in verbal or physical actions. It 
changes the current state of the world and requires the agents to restart their reasoning 
with the new situation. The cycle continues until the conversation is finished by the 
agents mutually agreeing to stop, or for another reason. 

 
Figure 1 Enablements for Constructive Dialogue Model [8]. 

Rationality refers to the agent’s ability to make decisions and deliberate on situa-
tionally appropriate actions (in AI, such agents have been called BDI agents), and it 
also considers the agent’s affective state which influences the agent’s reasoning. 
Emotions [3] are not explicitly represented in the architecture, since they are assumed 
to be manifestations of the agent’s internal state: the levels of arousal and valence of 
the agent’s affects are inherent to the agent’s general activity rather than computed by 
a particular emotion component. In fact, emotional activity can be regarded as one of 
the connection points of CDM to the cognitive architectures under the assumption that 
the processing of input signals results in an internal state which determines the emo-
tional quality of the agent’s response. 
 
2.2 Cognitive Robotics Models 

Two cognitive models are shown in Figure 2: ACT-R [2] and the Standard Model 
[13] (we do not discuss the third main framework, SOAR here). The focus is to model 
human behaviour based on the perception of the environment and the (motor) actions 
that the agent can take as the result of its reasoning. Consequently, studies have dealt 
with the visual and auditive systems and their functionality in the context of short-
term (working) and long-term (declarative) memory. Important research has also fo-
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cused on linguistic resources and knowledge representation for reasoning and concep-
tual categorization tasks. For instance, the integrated knowledge representation sys-
tem Dual-PECCS [14] uses two different sorts of common-sense reasoning, prototyp-
ical and exemplars-based categorization, to allow knowledge acquisition and devel-
opment of Conceptual Space representations for a variety of tasks. 

 

     
Figure 2 ACT-R Architecture (left) and the Standard Model (right), from [9]. 

Knowledge representation is an important aspect of cognitive processing and has 
been a topic of much debate (centralized or distributed processing, symbolic or con-
nectionist representation, procedural or declarative knowledge, etc.). From the dia-
logue point of view, there is a need for uniform representation of the meaning in order 
to allow higher-level modules to operate on meaningful chunks of the incoming in-
formation. While the overall view of the cognitive models involves two memory 
components (Working Memory and procedural/declarative Long-term Memory), it is 
likely that some kind of hybrid knowledge representation is needed to toggle between 
declarative and procedural knowledge in the system’s working memory. Moreover, 
since the agent needs to ground its knowledge in the physical world [7], an interim 
representation seems necessary to connect the concepts stored in the agent’s memory 
to its dynamic perception of the world. In fact, in recent years, the ProxyType Theory 
[22] has been proposed to cater for heterogeneity in concept representations and to 
address issues concerning the interaction between Long-term and Working Memory. 
According to the theory, the process of proxification manages conceptual structures 
into temporary constructs in Working Memory using heterogeneous representations: 
activation of a concept category in Long-term Memory (which contains networks of 
representations) results in the concept’s activation as token representation in Working 
Memory (as a “proxy” for the concept). Concept categories are complex networks of 
(neural) activations among the network elements, and they are constructed over time 
via perceptual interactions of the agent with the environment which results in repeated 
activations of relevant elements in the connected networks. (The network elements 
are causally connected since activation of an element will cause the activation of the 
connected elements in Long-term Memory, and the tokening of the concept category 
in Working Memory.) 

The ultimate goal for a robot agent is to learn via experience and be able to adapt 
to the dynamically changing world. The agent’s continuous learning of new concepts 
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and skills is an important part of interaction management and allows the agent to co-
ordinate action in order to adjust to its environment. However, the effectiveness of 
interactive learning depends on the quality of the interactions. So far most frequently 
used settings have included designer-controlled ways of interaction which are based 
on linear learning and scripted interaction sequences. Free natural dialogue interac-
tions provide new challenges by leveraging deep interactive learning and building of 
competences through interactions: besides the technically demanding aspects related 
to recognition and processing of various multimodal signals, such interactions pre-
suppose understanding of the partner’s intentions and partly developed skills, as well 
as social aspects of interaction. They require specific models for interaction through 
which social behaviours are learned and saved as persistently growing experience of 
the world. The goal also incorporates the issues studied in Theory of Mind [28] to 
construct a shared context for mutual understanding and shared context, which have 
also been some of the main issues in cooperative dialogue approaches.  

3 Integrated Architecture 

While dialogue modelling also subscribes to the goals related to knowledge represen-
tation and learning, the main focus is on the models of interaction management. Given 
the cascaded model of communicative enablements as presented above with Contact, 
Perception, Understanding, and Reaction, it is easy to see how to extend the Standard 
Cognitive Architecture by the CDM dialogue component which deals with the pro-
cessing and management of interaction. The integrated architecture in Figure 3 shows 
the basic requirements for spoken dialogue models and integration points with CDM. 

 
Figure 3 Cognitive Robot Architecture which integrates the CDM dialogue model and the 

Standard Model of cognitive processing (from [9]). 

The integration points for the Perception and Motor control components of the Stand-
ard Architecture are the CDM modules related to the enablements of Perception and 
Reaction, whereas Long-Term Memory (both declarative and procedural) and Work-
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ing Memory correlate with the modules in CDM Understanding. The detailed CDM 
Understanding modules encode the system’s procedural knowledge for the analysis of 
the user’s behaviour and deciding what to do next, as well as modules for three types 
of knowledge: the CDM Knowledge Base stores the robot’s (long-term) knowledge of 
the domain, of the user, and of the world in general, while the CDM Memory stores 
the system’s knowledge of the past dialogue events it has been engaged in, and the 
CDM Context models the immediate dialogue context and the (short-term) state of 
attention of the agent. It is worth noticing that the architecture makes an explicit dis-
tinction between semantic and episodic memory: semantic memory is scattered 
among the system components (e.g. language grammar belongs to the NLP Module 
and planning rules to the Planning Modules), whereas the CDM Memory is episodic 
and refers to a designated part of the agent’s knowledge where the previous sessions 
with a particular user are saved, and from where chunks of knowledge are retrieved 
for dialogue processing if the partner is identified as a returning user to interact with. 
All knowledge sources are connected to the other processing modules via Ontology, 
which provides semantic links between the Knowledge Base entities and linguistic 
concepts. As in Dual-PECCS [14], it is also possible to use other linguistic resources 
to provide an interface between the linguistic and the conceptual knowledge.  

The double nature of the robot as an agent and as a computer system sets require-
ments for the dialogue model. As an agent, the robot is perceived as a communicating 
partner, and as a computer system, it has access to vast digital information which it 
can also share with other agents through its connection to Internet (IoT [24]). The 
integrated architecture described above does not specifically deal with interactions in 
the ubiquitous environment, but it is possible to include sensor information as input 
through specific perception devices, and then visualise the data and process it as nor-
mal (cf. [29]). However, the ubiquitous environment can also drastically change the 
knowledge available for the agent, e.g. digital database is modified according to new 
data, and in these cases, the robot agent needs to possess procedural knowledge of 
how to cope with unexpected, unspecified, or underspecified situations. This paper 
does not discuss these issues but emphasises that probabilistic modelling of 
knowledge together with the agent’s capability to learn are crucial in their realisation.  

4 Discussion and Future Work 

In the field of Human-Robot Interaction (HRI), one of the important and much dis-
cussed topics is the notion of Uncanny Valley [18], whereby the robot’s human-like 
appearance is correlated with the acceptance of the robot as an interactive partner. At 
one end, we have robot agents which look and behave like human agents, while at the 
other end, the interaction partner is clearly a non-human agent which may exhibit 
different levels of human-likeness. The hypothesis states that the acceptance of agent 
applications increases when going from less human-like agents towards close to hu-
man-level behaviour, but there is a sudden drop in the acceptance when the robot 
agent reaches almost the same level of behaviour as the human. The Uncanny Valley 
phenomenon has since been shown to appear as a result of a mismatch in cognitive 
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categorization [16] of what is considered similar to but not exactly the same as the 
prototypical conversing agent (namely the human). Contradiction between typical 
members of a class and entities which deviate from them usually causes uncomforta-
bleness, fear and resistance, and explains why talking robots create similar reactions. 
In HRI, such cognitive mismatches are commonly triggered by the robot’s appearance 
and look, but also by its capability to interact with humans.  

The proposed architecture is considered a valuable first step to achieve natural dia-
logue interactions in HRI, and make the robot behave in a more natural manner. There 
are several aspects that can be further specified to experimentally validate the archi-
tecture and make the contributions visible, especially with respect to the integration of 
cognitive architectures into the CDM dialogue model. On the theoretical side, appro-
priate knowledge representation and integration of multimodal input (gestures, eye-
gaze) will be elaborated, and the ProxyType theory of concept representation will be 
investigated further. On the practical robotics side, the questions of how to develop 
socially competent robots and use novel AI technology to alleviate problems in the 
modern society will be explored. 

Future work will proceed using a top-down and bottom-up (TDBU) methodology: 
this aims to combine the theoretical model of interaction (top-down) with the auto-
matic recognition techniques and data analysis (bottom-up). The TDBU methodology 
uses novel technology to provide an objective basis for detecting and segmenting 
elements in the interaction flow, while the theoretical views of human observations 
and annotations are used for the interpretation and parameter setting. Speech recog-
nizers, parsers, eye-trackers, movement detectors, etc. are used to segment signals and 
provide bottom-up knowledge to trace gaze, face, and body, while the theoretical 
view of dialogue modelling and communicatively important signals are used to ex-
plore meaningful correlations and regularities in the (big) data. Deep learning tech-
niques and statistical correlations are used to develop such models. 

To explore how social robots can assist humans in various every-day tasks, the 
work will continue in an interdisciplinary manner using experimental methods from 
cognitive and social sciences to study user experience and engagement in social hu-
man-robot situations. Experimental design can consist of different types of robot 
agents (“personalities”) and of strategic profiling with respect to such issues as active 
narration vs. passive guidance, use of gestures, amount of feedback, etc. to compare 
the user’s experience and engagement with the robot agent in the selected scenarios. 
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