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Abstract. This paper discusses potential limitations in learning in au-
tonomous robotic systems that integrate several specialized subsystems
working at different levels of abstraction. If the designers have antici-
pated what the system may have to learn, then adding new knowledge
boils down to adding new entries in a database and/or tuning parameters
of some subsystem(s). But if this new knowledge does not fit in prede-
fined structures, the system can simply not acquire it, hence it cannot
“think out of the box” designed by its creators. We show why learning
out of the box may be difficult in integrated systems, hint at some exist-
ing potential approaches, and finally suggest that a better approach may
come by looking at constructivist epistemology, with focus on Piaget’s
schemas theory.
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1 Introduction

The typical approach for designing intelligent robots is Divide and Conquer : A
team of experts with different domains of competence is formed, each of which
shall develop the individual components (perception, actuation, reasoning) re-
quired for the system to achieve global intelligent behavior. Then, these sub-
systems need to be integrated, which requires some sort of interface between
subsystems and global coordination mechanisms.

As compared to disembodied AI, there are several reasons why robotic sys-
tems need to integrate several subsystems. For functional reasons (e.g., the robot
needs vision, path planning, dialogue), for engineering reasons (reusing existing
software modules), or for reasoning upon different types of knowledge (causal,
spatial, temporal) for which specific representations and reasoners have been
developed. One may for instance represent causal relations by some action lan-
guage and reason upon it with a satisfiability solver, while spatial matters may
be represented by transformation matrices and reasoned upon with graph search.

These specialized subsystems perform well in their own domains, and for
most of them, learning “variants” have been devised: vision systems can learn
new categories, motion planners can learn from previous queries or by imitation,
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task planners can learn heuristics, rule-based systems can learn by chunking,
etc. This paper points out the issue of drawing meaningful relations between
what is individually learned by the different subsystems of integrated systems
and, furthermore, questions the capacity of current learning methods for robots
to develop new representations and skills.

2 Learning in Integrated Systems

Let us consider the following example: a robot that should learn to manipulate
various objects. The robot is standing in front of a table and its task is to clear the
table, i.e, picking up any object from the table and releasing it in a nearby trash
bin. We assume a classical sense-plan-act architecture [1] with three subsystems:
deliberation, perception, and actuation, each of which being capable of learning.
Initially, the subsystems have initial knowledge about bottles and glasses:

– the deliberative subsystem knows that the task can be solved using first the
pick bottle or pick glass operators, and then the release trash operator;

– the perception subsystem uses an Artificial Neural Network (ANN) which
can label images from a camera as glass or bottle;

– the actuation subsystem has a database of motion primitives for pick bottle,
pick glass, and release.

Then a novel object is introduced, e.g., a credit card, and the system should
learn how to complete the task. The credit card cannot be grasped directly from
the table, i.e., it has to be slid to the edge of the table before it can be grasped
(see Fig. 1). We do not assume any particular learning methods, and suppose
that after sufficient training, the subsystems have learned as follows:

– the deliberative subsystem has learned a new operator grasp 34 (the system
does not know it is a slide-and-grasp) for objects of type type 23 (the system
does not know it is a credit card);

– the perception subsystem has been trained to recognize a new class of objects
(type 23 );

– the actuation subsystem has added a new motion primitive to its database
for grasp 34.

Fig. 1. Motion primitive for grasping a flat object.

The system can now deal with credit cards or (similar objects), but it has not
learned anything about why grasp 34 is appropriate for objects of type type 23.
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Therefore if it is presented with a novel flat but different object, for instance a
coin, it will not be able to reuse what it has learned about credit cards. Assum-
ing that the perceptual subsystem has learned a feature related to “flatness”,
and given previous experiences with flat and non-flat objects, the system could
infer through statistical methods a correlation between flatness and a particular
grasping strategy, hence using this knowledge to grasp unforeseen flat objects.
But since the subsystems work –by construction– in different domains, this may
simply not happen. What is learned by one subsystem is not necessarily relevant
for other subsystems. Unless a human designer has anticipated which features
may be of interest and built them in.

3 Horizontal and Vertical Learning

Learning is a general function that may take a variety of forms. For subsequent
discussion, we introduce an informal distinction between two types of learning
processes: horizontal and vertical learning.

We denote by horizontal learning the type of learning commonly found in
artificial systems (supervised/unsupervised learning, Reinforcement Learning).
Horizontal learning takes place in predefined structures, which have been set up
for that end. For instance, rules in a logic program, weights in an ANN, spline
parameters of a motion primitive. During the learning process, new knowledge
is created by tuning existing knowledge or appending the existing one with new
instances. The knowledge acquired through horizontal learning can be subse-
quently used by the system without modifying its core algorithm, since the data
structures and/or semantics are the same as for previous knowledge.

Vertical learning is a more fundamental type of learning which involves mod-
ification of the system itself as knew knowlege is acquired. This is what humans
(and probably other evolved species) do as they grow up. As they develop, in-
fants gradually acquire representations about causality, space, time, quantity,
and other concepts [2]. Vertical learning goes beyond acquiring new data: it re-
quires to “update” the reasoning process itself. Consider for instance a system
capable of causal reasoning using, e.g., task planning methods [3]. Causality is
represented by means of operators with preconditions and effects. Such system
can learn new causal relations by augmenting its domain with new operators
(horizontal learning), but if the system is to learn something about duration of
actions, then it needs both new representations (i.e., operators with duration)
and to update the planning algorithm for reasoning upon time intervals. The
same applies to perception and actuation: robots can only see or act what their
representations and algorithms allow for.

We believe that both types of learning are necessary as a basis for intelligent
robots: horizontal learning for adapting to new objects/environments, and ver-
tical learning for being able to solve problems that have not been anticipated
by their designers. Next, we examine some approaches to address the vertical
learning problem.
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4 Vertical Learning

To our knowledge, there exists no automated system capable of updating its core
reasoning process through learning.

One way to circumvent the problem is to learn new representations. Learning
new representations allows to see the world from a new perspective, therefore
it is a key ability for solving unforeseen problems [4]. This approach as been
used in Reinforcement Learning for learning new representations of the action
space [5], in computer vision for image attributes [6], or in some cognitive ar-
chitectures, e.g., SOAR, for learning macro-operators [7]. Learning new repre-
sentations speeds up learning and improves generalization by better exploiting
structure in the training data, but it does not modify the system’s core reasoning
method. A system can for instance learn macro-operators, but the semantics of
these macro-operators and the algorithm that reason upon them are predefined
and remain unchanged through learning, which inherently bounds the scope of
such systems.

Another approach to tackle vertical learning is to come up with a form of
knowledge representation which can represent everything. If causal, perceptual
and motor knowledge could be represented seamlessly with the same language,
learning could take place in a single system, thereby avoiding the issue of learn-
ing in integrated systems addressed in Section 2. Ontologies are good candi-
dates to this end. Some systems have been developed both for perception, e.g.,
SceneNet [8] and physical actions and processes [9]. The first issue with this
approach is completeness. Manually modeling knowledge about, e.g., all exist-
ing physical objects, in the form of hierarchical subsumption relations is in-
tractable [10], and has to be done manually (i.e., by human), which shifts the
problem of vertical learning to ontology design. The second issue comes with
reasoning upon this knowledge, which may be computationally intensive when
it requires to merge knowledge across different domains [11].

Deep end-to-end learning allows to learn perceptual features, deliberation
rules, and motor control parameters within a single process. But the training
process is data and computationally intensive, even for narrow tasks such as
object grasping [12] or driving[13]. Therefore it is not clear how this approach
could scale up for robots learning to solve a wide range of problems.

Integrated systems have issues for relating knowledge learned across differ-
ent subsystems, while monolithic systems have computational issues or heavily
rely on designer’s knowledge. In the next section, we question (and wish to fos-
ter discussions on that theme during the workshop) the possibility of drawing
inspiration from a constructivist psycholgy for addressing our problem from a
different perspective.

5 Towards a Constructivist Approach

AI/Robotics essentially tries to reproduce cognitive and sensorimotor skills of
humans adults. This approach has been successful for solving variety of problems,
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even outperforming humans in narrow domains. In the constructivist paradigm,
the question of interest is not “How do humans grasp different objects?” but
rather how a system who is initially barely aware of itself –the infant– acquires
knowledge and skills which allow him to grasp different objects.

The logician and psychologist Jean Piaget has long studied how knowledge
is constructed, particularly in infants. His main contribution his the discovery
of universal developmental stages in cognitive development, which may occur at
different times, but always in the same sequence, regardless of cultural or so-
cial environment [14]. In other words intelligence is not innate, but constructed
through necessary steps. The first stage is the sensorimotor stage, in which the in-
fant progressively builds knowledge about the world through interactions within
it (mainly trial and error at that stage). Piaget theorizes schemas as abstract
elementary building blocks of knowledge. In a nutshell, schemas can represent
objects, actions, or more abstract concepts. Knowledge builds up through ac-
quisition of new and more abstract schemas. Piaget’s theory also provides two
basic general mechanisms for developing schemas:

– assimilation is the process by which an existing schema is used on a novel
object, e.g., a kid sees a bold man and shouts “clown!”;

– accomodation is the process of modifying existing schemas when assimila-
tion failed, e.g., the father tells his kid that the bold man his not a clown
because he does not have red hair. The kid then modifies his “clown” schema
accordingly [15].

Piaget’s ideas have been implemented and tested in micro-world simulations
or simple systems [16][17][18][19]. As argued by Guerin et al., Piaget’s theory
is incomplete in different aspects [20] and requires more research to fill in the
gaps, which makes it a potentially rich field of investigation. To our knowledge,
no work as been done on applying Piaget’s ideas to robotic systems. In theory,
the assimilation/accomodation learning mechanism proposed by Piaget allows
for bottom-up hierarchical knowledge creation, from basic sensorimotor skills,
know-hows, up to more abstract cognitive operations.

Fig. 2. Conceptual view of the proposed sensorimotor schema.
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In order to investigate the application of Piaget’s theory to robotics, we
propose a model which could be used as a basic building block for a schema-
based learning robotic controller (see Fig. 2). Unlike previous attempts, this
schema model operates in the continuous time domain, i.e., inputs and outputs
are multidimensional time-dependent signals. The schema continuously learns a
forward model, which predicts sensory signals (S’) as a function of motor control
signals (M). The difference between predictions and actual sensory input is used
by the controller for adjusting control parameters in face of disturbances, which
corresponds to the assimilation mechanism. When prediction (S’) and actual
sensory input (S) diverge beyond a certain threshold, a warning signal is issued
to trigger the accomodation mechanism at a higher level.

In the initial stage, the system creates sensorimotor schemas through ran-
dom exploration and motor babbling. These schemas are reinforced as they
are re-enacted. When a sufficient number of sensorimotor schemas has been
reached, they produce patterns of activation which can be assimilated by higher
level schemas. Higher-level schemas follow the same principles as sensorimotor
schemas do, except that their input and output come from other schemas instead
of sensors and actuators. Hence, assimilation and accomodation take place with
the same mechanism, but at higher level of abstraction.

More details about the envisioned system will be presented at the workshop
and, given the preliminary status of our proposal, rather than presenting results,
we hope to foster discussions and to get inspiring ideas and suggestions from the
community.
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