
Deep Learning and Embodiment

Pietro Perconti1 and Alessio Plebe1

Department of Cognitive Science,
University of Messina, Italy

{perconti,aplebe}@unime.it

Abstract. Embodiment has become mainstream cognitive science, and
has brought several important theoretical and empirical advances. Some
embodied cognitive scientists have argued that cognition based on action
and bodily states is incommensurate with the standard representation-
alist and computational approach. Often the case of visual perception is
used as the best example for this thesis. In the recent years, the family
of algorithms collected under the name “deep learning” has revolution-
ized artificial intelligence, enabling machines to reach human–like per-
formances in many complex cognitive tasks, especially in vision. Such
results are achieved by learning on collections of static images, therefore
neglecting actions, dependency on time, and any form of interaction with
the environment. Deep learning models were developed with engineering
goals in mind, and advancing cognitive science is not in the agenda of
this research community. Still, the achievements of deep learning in the
case of vision seem to challenge widespread assumptions about visual
perception in embodied and enactive cognition.

1 Introduction

Since more than two decades embodiment has taken center stage in cognitive
science. Broadly speaking, embodied cognition emphasizes the role played by
the body for cognition, in a variety of possible ways. One way could be that the
mechanisms for concept manipulation and reasoning cannot be detached from
the mechanisms by which our body acts and perceives, as argued by Lakoff and
Johnson [44]. Since the body is the locus of actions, embodiment naturally im-
plies enacted cognition, as done by Noë [56, 53]. Indeed, the body interacts in
its environment, therefore embodiment reconciles cognition with Gibson’s eco-
logical psychology [20, 21, 27]. A further important account of embodiment lies
in artificial intelligence, as the need of implementing a mechanical body and
active controls in order to achieve simulated cognitive capacity [2, 57]. Embod-
iment has certainly contributed to fundamental advances in cognitive science;
but, a controversial aspect has been the rejection of the computational and rep-
resentational theory of mind [19, 5, 31]. More details about the various faces of
embodiment, and its challenge to the computational theory of mind, will be
given in §2.

We argue that today a new and unexpected actor may step into this debate:
deep learning. This term refers to a family of artificial neural network techniques
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that are collecting a number of exciting results. In 2012, the group at the Uni-
versity of Toronto lead by Geoffrey Hinton, the inventor of deep learning, won
the most challenging large–scale image classification competition. Soon Hinton
was invited by Google, which adopted deep learning for its image search engine.
In 2016, the company DeepMind, founded by Demis Hassabis and soon acquired
by Google, defeated the world champion of Go, the Chinese chessboard game
much more complex than chess [73]. The leading Internet companies were among
the first to deploy deep learning on a large scale [25], and are also the largest
investors in research, way beyond their internal needs.

Deep neural models are the only artificial perception systems that routinely
outperform humans in object recognition tasks [80]. This performance is discon-
certing for the perspective of embodied (enacted, embedded) cognition, because
it is achieved with computations that disregard any action, any dynamics, any
interaction with the environment. It is certainly necessary to be cautious in
drawing conclusions, because deep neural models are not intended as tools for
studying cognition, and are not biologically plausible models (see §4). However,
we deem these results may, at least, suggest that the embodied components in
vision are important, but not indispensable, for the recognition task.

2 Embodiment and Computationalism

The story usually goes as follows. Cognitive science comes into two steps, the
first being a mere computational account for modeling human intelligence and
the second a more ecological and biological approach aimed at understanding
how the human brain actually works in its environment. The core business in
early computational psychology was to design cognitive architectures, that is,
models of how a number of information–processing devices interact with each
other to perform a given cognitive task. And this is the key goal for the cognitive
science even now. But, while early computational psychology does not care how
all this processing is actually realized on its matter, the more recent phase of
cognitive science would be embodied, meaning that it would be grounded on
how the human brain actually works and on how the human body on the whole
encodes the information that comes from the world. Milestones in this change
in perspective includes the amazing achievements in the field of neuroscience
over the last decades, the ecological vision approach by James Gibson [21], and
Parallel Distributed Processing (PDP) [68]. All these research programs share
the idea that understanding intelligence is not matter of imaging an abstract
and disembodied subject in front of a static world, but matter of taking into
consideration the whole scene, in which perceptual scenarios endowed with many
affordances suggest human bodies how to achieve their goals.

The first victim in this way of reasoning was, of course, the notion of men-
tal representation. It suggests, in fact, the idea of a sharp dualism between the
subject and the world in which mental representations are a sort of mediation
device consisting essentially in information processing. The supporters of the
4E cognition (embodied, embedded, enactive, and extended), on the contrary,



prefer a more dynamic view in which individuals interact with other things in
the environment in a more direct way. This is, however, highly misleading. The
notion of mental representation itself, in fact, does not entail any denial of bodily
possibilities and constraints, being simply an abstract rule able to link kinds of
environmental events and bodily encoding in a systematic way. How an abstract
rule can have a causal role on the world is the most celebrated achievement in
the representational computational theory of mind. The point is, however, that
computational psychology is neutral about ecology of cognition. It is simply,
so to say, the way to solve the mind-body problem, not the way to discrimi-
nate ecological and dynamic accounts in understanding how knowledge works.
Mental representations could be dynamic and ecological constructs, as many 4E
cognition supporters desire, if we are able to sketch out its functioning in the
right way, as nowadays it is possible to do on the basis of neuroscience and
neural networks [58, 32, 59, 60]. It is matter of conceiving the right idea of what
mental representations are, not to rule out them from the scene. And, perhaps,
with these considerations in our mind it becomes possible to reconcile embod-
ied cognition with classical computational psychology [52]. The real problem in
embodiment and enactivism is the expectation that only by adopting a 4E cog-
nition account we can deal with cognition in the right way. In other words, if a
cognitive architecture is not modeled in a human–like manner, we should not be
able to understand the cognitive process we are interested in. This is, however,
precisely the point deep learning models put into discussion. While, in fact, their
basis is grounded in PDP and, in the end, in the neural networks account, deep
learning models do not follow any further biologically inspired constraint and
achieve their results in a mere mathematical way and even without any particu-
lar cognitive concern in mind. This is like a scandal for embodied cognition: what
about biological constraints, if we can get human–like cognitive performances in
another way?

A similar scandal occurred some years ago in the field of cognitive ethology.
Since Gordon Gallup [17] devised the mark test, or mirror test, many other
ethologists were engaged in testing the capacity to recognize own image reflected
in a mirror. It results that, besides humans, the other species which show this
ability are those closer to us. The best results have been obtained with great apes.
One can think that there is a phylogenetic reason for this. You need a human–
like brain to have the self-recognition capacity. In this framework, a little scandal
arises when it emerges that also magpies, a songbird from the crow family, is
endowed with self-recognition ability [61]. Magpies, in fact, have a brain very
different from that of primates and other mammals, insofar it does not include
any neocortex, that is, the large structure on the outer surface of the brain where
self-recognition, like most higher-order processing, takes place. As in the case of
the deep learning performances in objects recognition, we have to be cautious.
Recent findings suggest a homology between certain neuronal cell types of the
avian dorsal telencephalon and the cell types of mammalian neocortical circuits
[33, 3]. But, in any case, we have to moderate the neocortex enthusiasm, as we
have to moderate the embodiment fanaticism.



3 Deep Neural Models

Deep neural models, also named deep learning models, are responsible for the
current resurgence of Artificial Intelligence after several decades of slow and
unsatisfactory advances [71]. Deep learning, in all its variations, has achieved
unprecedented success in a vast range of applications, often approaching human
performance [49]. Deep learning evolved from artificial neural networks, intro-
duced in the ’80s with the PDP (Parallel Distributed Processing) project [68].
The basic structure of the “parallel distributed” is made of simple units orga-
nized into distinct layers, with unidirectional connections between each layer
and the next one. This structure, known as feedforward network, is preserved
in most deep learning models. PDP reestablished a strong empiricist account,
with models that learned from scratch any possible meaningful function just by
experience. The success of PDP was largely due to an efficient mathematical
rule, known as backpropagation, which adjust the connections between neurons
according to a number of input/output examples shown during trainig. The
mathematics of learning in deep networks is an evolution and a refinement of
the same mathematical rule for learning in PDP models, and in fact Geoffrey
Hinton [28] was one of the main contributors to the PDP project.

The “deep” addition to PDP style of feedforward network is just in the num-
ber of layers between the input and output layers, usually called “hidden” layers.
Neural models can learn increasingly complex function by augmenting the num-
ber of units. This way, however, the number of parameters to optimize increases
as well, and learning becomes more difficult. In particular, it was observed that
increasing the number of units by adding layers was much less efficient than
increasing the width of a single hidden layer [10].

A novel learning strategy, again invented by Hinton, succeeded in breaking
the limit of no more than three layers [29], paving the road for deep models.
Currently, the most successful learning method is stochastic gradient descent
[37, 72], not much different from the good old backpropagation.

There is a fundamental difference in aims between the first generation of
artificial neural networks and deep neural models. The former was motivated
primarily by “Explorations in the Microstructure of Cognition”, as the title of
the book by Rumelhart and Mcclelland indicated [68]. Conversely, deep neural
models are developed with engineering goals in mind, without any ambition or
interest in exploring cognition, even if most of the protagonists are the same
of earlier artificial neural networks, like Hinton. A striking example is the re-
cent invention of a deep model known as variational autoencoder [38, 64], which
mathematical formulation is very close to the free–energy principle for predictive
brains of Friston [12, 13]. Despite the large resonance of Frinston’s theory within
cognitive science, all the proposers of variational autoencoder are either unaware
or fully disinterested of this coincidence. Most of the components of deeep learn-
ing – for example reinforcement learning or recurrent networks – owe indeed a
dept to neuroscience and cognitive science, as PDP far legacy, but this connection
is now neglected, all that matters is the pragmatic success in applications. The
success is so resounding to stimulate some reflections on the relevance of deep



models for cognitive science as a whole [50, 7], or for the so-called “general”
artificial intelligence [43, 45]. These are important considerations for cognitive
science, but they just happen not to be the issues to be examined here. Our
focus is only on the results achieved by deep learning in artificial vision, and
their relevance for embodiment in cognitive science.

4 Disembodied Vision

There are several reasons for regarding vision as the case where results achieved
by deep learning are challenging for embodied cognition. First, vision is a paradig-
matic case used in support of embodied cognition, as seen in §2. Vision is also
the most successful field of application for deep learning, as recognized by the
scientific community of vision science [80]:

For decades, perception was considered a unique ability of biological systems,

little understood in its inner workings, and virtually impossible to match in

artificial systems. But this status quo was upturned in recent years, with dra-

matic improvements in computer models of perception brought about by ’deep

learning’ approaches [. . . ] For as long as I can remember, we perception scien-

tists have exploited in our papers and grant proposals the lack of human-level

artificial perception systems [. . . ] But now neural networks [. . . ] routinely out-

perform humans in object recognition tasks [. . . ] Our excuse is gone

An additional reason of interest for vision is that deep models for this applica-
tion have a peculiar architecture, often regarded closer to the brain than ordinary
layered neural networks. This type of architecture is called Deep Convolutional
Neural Network (DCNN), because it integrates the convolution operation [67]
within a layered learned structure. This strategy was first proposed by [15] in
the architecture called Neocognitron, where “neo” is with reference to his earlier
Cognitron [14]. The Neocognitron alternates layers of S–cell type units with C–
cell type units, which naming are evocative of the classification in simple and
complex cells by Hubel and Wiesel [30]. The S–units act as convolution kernels,
while the C–units downsample the images resulting from the convolution, by
spatial averaging. The crucial difference from conventional convolution in image
processing is that the kernels in Neocognitron are learned. The first version of
the Neocognitron learned by unsupervised self–organization [82], with a winner–
take–all strategy: only the weights of the maximum responding S–units, within
a certain area, are modified, together with those of neighboring cells. A later
version [16] used a weak form of supervision: at the beginning of the training
the units to be modified in the S–layer are selected manually rather than by
winner–take–all, after this first sort of seeding, training proceed in unsupervised
way.

The convergence between Neocognitron and the PDP project was done by
[46], applying backpropagation to an architecture composed by two layers of
Fukushima’s S-cell type, followed by ordinary PDP neural layers. It was an early
step towards DCNN. Like the artificial neural networks of the PDP project, this



mixture of Neocognitron and backpropagation met with a relative good success,
especially in the field of character recognition [47], but it was not the main choice
within mainstream computer vision. A major shift came about when DCNNs,
like ordinary layered networks, became “deep”, once again thanks to the work of
Hinton together with his PhD student Krizhevsky [42]. This model dominated
the ImageNet Large-Scale Visual Recognition Challenge, the major competition
in computer vision. The model dropped the previous error rate for the ImageNet
Challenge from 26.0% down to 16.4%. This first success steered computer vision
towards DCNNs, and several refinements continued to improve performances,
even surpassing those of human subjects [63].

It is crucial for our purposes to see in details how this result has been
achieved. ImageNet is an image database organized according to the hierar-
chy of nouns in the lexical dictionary WordNet, in which each lexical entry is
associated with hundreds of images [69]. The Visual Recognition Challenge uses
a subset of ImageNet made of 1000 different categories, corresponding to synsets
in WordNet, with roughly 1000 images in each category, About 1,2 million im-
ages are used for training the models, and 150,000 are used for testing. The
DCNN models are simply exposed, several times, to all training images together
with their known category. The images are all of the same size, 256× 256. The
model is unaware of any further information: nothing about the context of each
image, nothing about the relations between categories, nothing about the poses
each object can assume in space, nothing about affordances exposed by objects,
nothing about how objects can change their aspect in time. In summary, the
model learns to recognize objects in a fully disembodied way.

The main lesson learned by the computer vision community from embodied
cognition [70, 56, 57] should be that trying to understand an image as a static
task is hopeless. However, vision turns out to be much easier when the agent
interacts with the environment, when vision is treated as an interactive pro-
cess. Yet artificial vision in embodied and enactive systems have never achieved
performance anywhere near to that of DCNN models. Most often active vision
models have been developed for very simplified and easy tasks, for example using
just the two categories of circles and diamonds [1], or the four categories cat,
dog, giraffe and horse [81]. In a comparison of the best active vision models [9],
errors on a set of 100 different individual objects were around 40% or worst.

Let us reinstate here that it is out of the scope of this paper the discussion
about the pros and cons of deep learning, we provided references for that in §3.
Our reflections derive from the empirical observation of the impressive advantage
of deep learning in vision, over all other existing methods, including methods
that have attempted to adhere to embodied and enactive cognition.

Still, one may object that DCNN models are engineered software far from
the way natural vision works, therefore cannot be used to evaluate cognitive
theses. Indeed, “neurons” in deep learning models bear little resemblance to
their biological cousins. However, recent studies revealed surprising similarities
between patterns of activation in layers of convolutional neural models, and
patterns of voxels in subjects seeing the same images. One of the first attempt to



relate results of DCNN with the visual system was based on the idea of adding
at a given level of an artificial network model a layer predicting in the space
of voxel response, and to train this layer on sets of images and corresponding
fMRI responses [23]. Using this method, a model very similar to AlexNet [4]
was compared with fMRI data [24], training the mapping to voxels on 1750
images. The model responses were predictive of the voxels in the visual cortex
above chance, with prediction accuracy slightly below 0.5 for area V1, and of
slightly below 0.3 for area LO. The same technique has been further exploited,
by generating artificial fMRI data, using stimuli of classical vision experiments,
such as simple retinotopy or face/places contrast, for which good agreement
between synthetic fMRI responses and DCNN was found [11].

The use of synthetic fMRI data is pursued also with a different strategy [36],
constructing a statistical model of the activity in higher visual cortex, by com-
bining a wide range of information from previous studies. This model allows the
interpolation of novel responses as needed for experimental purposes. Using this
method Bryan Tripp [77] was able to test similarities with cortical responses and
DCNN models, on various different properties: population sparseness; orienta-
tion, size and position tuning; occlusion; clutter; and so on. The DCNNs tested
were AlexNet [42] and VGG-16 [74]

An alternative method for comparing DCNN models and fMRI responses
was offered by the representational similarity analysis, introduced by Nikolaus
Kriegeskorte [41, 40]. This method can be applied to any sort of distributed
responses to stimuli, computing one minus the correlation between all pairs
of stimuli. The resulting matrix is especially informative when the stimuli are
grouped by their known categorial similarities. The whole idea is that the re-
sponses across the set of stimuli reflect an underlying space in which reciprocal
relations correspond to relations between the stimuli. This is exactly the idea of
structural representations, one of the fundamental concepts in cognitive science
[76, 54, 60]. The representational similarity analysis is applied by [35] in compar-
ing responses in the higher visual cortex, measured with fMRI in humans, and
with cell recording in monkeys, with several artificial models. This study is very
interesting because it includes, in addition to AlexNet, few models with more
biological plausibility.

The most biologically plausible model is VisNet [83, 66], organized into five
layers, which connectivity approximates the sizes of receptive fields in V1, V2,
V4, posterior inferior temporal cortex, and inferior temporal cortex. The network
learns by unsupervised self-organization [84] with synaptic modifications derived
from Hebbian rule[26]. VisNet does not fully adhere to embodied and enactive
cognition, however, it attempts to include in a biologically plausible model the
perception of an object when acting on it or when the object is moving. For
this purpose, learning includes a specific mechanism called trace memory, since
learning of a single cell is affected by a decaying trace of previous cell activity.
This rule is an attempt to reproduce an embodied and enactive component of
vision, where invariant recognition of objects is learned by seeing them when
moving under various different prospective.



Kriegeskorte and co–workers [35] constructed several representational simi-
larity matrices on a set of natural images spanning multiple animate and inan-
imate categories, comparing voxels in the inferior temporal cortex (IT) with
models (the study actually compared 37 different models, of which only AlexNet
and VisNet are of interest here). The analysis revealed that AlexNet was sig-
nificantly more similar to the IT structural representation of the categorical
distinction animate/inanimate than VisNet.

This impetus of studies on the analogies between DCNN and the visual sys-
tem has led to a broad discussion in the visual neuroscience community on the
relevance of deep learning models for their scientific objective. Positions span
from a mostly positive acceptance [18, 80], to a cautious interest [48, 22], down
to more skeptical stances [55, 65, 8]. There is obviously a large number of struc-
tural features of the visual system that drastically departs from a DCNN model.
Just to mention few: visual maps in the cortex have many strong interconnec-
tions and a very large number of weaker connections [79, 78, 51]; receptive field
sizes change within a cortical map, and the degree of changes is larger in higher
cortical areas [34]; receptive field are also modulated by tasks [39]; scene dy-
namics affects recognition areas, in addition to motion areas [75]. And, most
of all, it is certainly true that the visual system in the brain is embodied and
enactive [6, 62]. Still, the point is that DCNN is at the same time the only type
of model that achieves human performances in vision, and the only model that
displays similarities with brain activation of subjects seeing the same pictures.
This fact may suggest that there is a core processing, necessary for discriminat-
ing the content of the scene, which works essentially as a computation on local
patterns of information. This local process seems to be relatively independent
from environmental and bodily cues.

5 Conclusions

The performance achieved by deep learning models in visual pattern recogni-
tion is a highly unexpected circumstance in contemporary cognitive science, so
deeply influenced by the 4E cognition account and, in particular, by embodi-
ment concerns. It should be simply a thing not occurring. Despite mainstream
expectations, the fact that it actually happened shows how much the oppo-
sition between classical cognitive science and embodiment concerns is highly
misleading. As above mentioned, computational psychology and classical mental
representations are ecologically neutral. In addition, we are faced with a sort of
micro–singularity in the progress of cognitive science, i.e., a case in which artifi-
cial intelligence surpass human intelligence: a new challenge arising from the field
of artificial intelligence for both the cognitive science and common sense. This
is perhaps the moral of the story: we have to revise our current theoretical ex-
pectations in order to accept that biologically–inspired and embodied cognitive
architectures are not a warranty for a successful processing.
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