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The article is devoted to the creation of a surface radiance factor mathematical model. The basis of the model is the solution of the 

boundary value problem of the radiative transfer equation (RTE). The surface is considered as a structure consisting of several turbid 

layers, each of which is characterized by its optical parameters. The top of the structure is randomly rough, uncorrelated, Fresnel. The 

lower boundary reflects perfectly diffusely. The complexity of solving the RTE boundary value problem for real layers is due to the fact 

that the suspended particles in each layer are always much longer than the wavelength. This leads to a strong anisotropy of the radi-

ance angular distribution according to Mie theory. The solution comes down to a system of equations by the discrete ordinates method 

that consists of several hundred of differential equations. Subtraction of the anisotropic part from the solution based on an approxi-

mate analytical solution of the RTE allows avoiding this problem. The approximation is based on a slight decrease in the anisotropic 

part of the angular spectrum. The matrix-operator method determines the general solution for a complex multilayer structure. The 

calculation speed can be increased without compromising the accuracy of the solution with the help of the synthetic iterations method. 

The method consists of two stages: the first one repeats the described one with a small number of ordinates; on the second one the 

iteration of it is performed. The model is realised in the Matlab software. 

Keywords: radiative transfer equation, matrix-operator method, synthetic iterations method. 

 

1. Introduction 

Reflective properties of surfaces play the key role in light-

ing calculations, and in most cases, calculations are impossible 

without knowing them. Some objects reflect both diffusely and 

specularly. Taking into account such surfaces is essential for 

correct calculations. Radiance factor is the classical value used 

to describe spatial reflective properties. In [14] a model of radi-

ance factor of a uniform layer with diffuse bottom and Fresnel 

upper boundary was described. The present article is aimed to 

find the solution for a multi-layered structure and to optimize 

calculations (more fast calculations without lowering in accura-

cy). 

2. Boundary value problem of the RTE for a 
uniform layer 

A partially coherent wave reflection from a structure with a 

complex optical characteristics analysis shows [4] that the wave 

is dived into two components, after solution averaging: a coher-

ent one determining the optical characteristics and a quasiuni-

form admitting the beam description and obeys the RTE. If the 

irradiating inhomogeneities of the medium are located in the 

Fraunhofer region from each other, which is most often realized 

in practice, then the optical characteristics of the medium are 

determined by summing them over the elementary volume of 

the medium. 

Radiance factor is the relation between the radiance coming 

out from a surface in the specified direction and the radiance of 

an ideal diffuse surface in the same conditions. Therefore, the 

determination of the surface radiance factor is reduced to a 

boundary value problem for a flat layer. Let us analyze the al-

gorithm for the numerical solution of the RTE boundary value 

problem for the case of irradiation of a turbid layer with optical 

thickness 0 by a plane unidirectional source (PU) in the direc-

tion  2

0 0 0
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where L(,,) is the radiance in the viewing direction 

 2 2ˆ 1 cos , 1 sin ,     l , ˆˆ( , )  z l  at optical depth 

0

( )

z

d     ; ˆ ˆ( , )x l l  is indicatrix of scattering;  is single 

scattering albedo. The problem (1) is defined in the coordinate 

system OXYZ, the axis OZ is directed perpendicularly down, ẑ  

is the unit vector along OZ. z = 0 on the upper boundary. 

Numerical solution implies discretization of the RTE. The 

scattering integral should be replaced by a finite sum [2]. It is 

impossible, since there are singularities in the angular radiance 

distribution, which cannot be replaced by a finite series in any 

basis. The article [9] offers to single out the direct source radia-

tion, which became an indispensable element of all RTE solv-

ing methods. However, a feature of all natural objects is the 

presence of suspended particles, which sizes significantly ex-

ceed the wavelength, which, in accordance with Mie Theory, 

leads to high angle scattering anisotropy, and the extraction of 

direct radiation is not enough efficient. In case of presence of 

strong anisotropy in the radiance angular distribution, replacing 

the integral with a finite sum can lead to significant uncertain-

ties [15]. 

3. RTE discretization 

The idea is of the accurate discretization is to analytically 

distinguish all the singularities and the anisotropic part ˆ( , )aL  l , 

i.e. to represent the solution in the form [1]: 

 ˆ ˆ ˆ( , ) ( , ) ( , )aL L L    l l l , (2) 

here ˆ( , )L  l  is the regular part of the solution (RPS), which is a 

smooth function. Such a smooth function can be represented by 

a finite basis of elements. 

Considering (2) the boundary value problem (1) for ˆ( , )L  l  

is [2]: 
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where the source function ˆ( , )  l  is defined by the anisotropic 

part of the solution: 
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4

a
a a

dL
L x L d

d

 
         
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l

l l l l l l . (4) 

As a numerical method implies finding an approximate val-

ue, it cannot exactly correspond to boundary conditions. That is 

why the second boundary condition is changed. 
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Since ˆ( , )L  l  is a smooth function, it can be represented in 

a finite basis. For example, if the RTE is discretized by the 

discrete ordinate method (DOM), the representation is as fol-

lows: 
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where C ( ) C ( , ), C( ) C ( ), C ( )
T

m

i



  
           is a column 

vector of discrete values of the azimuthal expansion coefficients 

of radiance in a Forier series, 0,5( 1)j j

    , j are zeros of 

Gaussian quadrature of the order N/2 for zenithal discretization 

of the scattering integral. Index m is further absent due to the 

lack of need for it. 

This allows to replace the scattering integral by a finite 

sum. The boundary value problem transforms to a boundary 

value problem for a matrix inhomogeneous linear differential 

equation of the first order with constant coefficients: 
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here wj are the weights of the Gaussian quadrature of the zen-

ithal order N/2, P ( )n

l   are associated polynomials Legendre, 
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4. Propagator and scatterer 

The solution of the matrix equation (6) can be presented [5] 

as the sum of the general solution of the homogeneous equation 

and the particular solution of the inhomogeneous: 
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where the function 
B( )P( , ) e tt    is the solution of the homo-

geneous equation describing the relationship of the radiance 

distributions at two points t and  of the medium without inter-

nal sources. Such a function is called propagator. 

There are problems with the solving of (7), because the 

propagator contains both positive and negative exponent func-

tions. This physically corresponds to flows propagating top-to-

bottom and bottom-top. Thus, the matrix is poorly conditioned, 

and the calculations for fields with >1 become impossible. 

Scale conversion is proposed to avoid this effect [7]: 
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where U  is the eigenvector matrix of the matrix B ; 

diag( , )      is the eigenvalues matrix,     ; 
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The boundary value problem (1) and the corresponding sys-

tem (6) are two-point problems, as the conditions on the bound-

aries are given, and the solution inside the layer needs to be 

found. Therefore, the solution (7) based on propagators is not 

complete [11]. 

Column vectors 0C (0), C ( )    in (8) describe the flows 

falling on the layer and are defined by the boundary conditions. 

The vectors 0C (0), C ( )    correspond to the radiation flows 

reflected from and transmitted the layer. Let us solve the equa-

tion (8) with respect to flows exiting the layer. The solution is 

get in the form of scatterers [6]: 
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The expression (9) in the form of scatterers gives us the re-

lation between the streams emerging from the layer and the 

incident ones and is a generalization of the radiance factor. The 

column F  describes the inner radiation of the layer, the matri-

ces R  and T  represent discrete values of the radiance factors 

for reflection and transmission. 

5. Invariance of the solution 

In the simplest case, a multilayer structure can be represent-

ed by only two layers: 
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where the subscript defines whether the upper 1 or lower 2 be-

longs to. Vertical arrows indicate the direction of radiation inci-

dence on the layer. 

The radiation emerging from the first layer is the radiation 

entering the second layer and vice versa, that is: 
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Solving the system with respect to the reflected radiation 
1C  and transmitted radiation 

2C  with respect to the incident 

radiations on the system, we obtain: 
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where  
1

2 11 R R
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The expression (12) for two adjacent layers is completely 

equivalent to the expression for one layer (9) in the form of 

scatterers, but with effective parameters (coefficient) that can be 

obtained from the parameters of each layer separately. This 

shows the invariance property of the solution of scatterers, 

which allows us to logically go over to the invariant immersion 

of V.A. Ambartsymian [13]. 

On the other hand, invariance allows the calculation of a 

layer with an arbitrary vertical inhomogeneity, breaking it into 

an arbitrary number of homogeneous layers. In this case, two 

adjacent layers can be replaced by one layer described by ex-

pression (12). This approach in transport theory is called the 

matrix operator method [10] (MOM). The advantage of the 

obtained expression (12) is the allocation of the anisotropic part 

of the solution in arbitrary form (2). 

6. Anisotropic part of the solution 

If we talk about the complexity of calculations and, accord-

ingly, the speed of calculations using some software, the key 

role for this has the sizes of the matrices included in the matrix 



solution (9) and (12), i.e. the values of the constants N, M, K, 

where N is the number of discrete ordinates, M is the number of 

azimuthal harmonics, K is the number of members of the de-

composition of the indicatrix into polynomials Legendre. 

In the general case of an arbitrary incidence angle, the val-

ues are approximately equal: M ≈ N ≈ K [2]. However, with a 

successful choice of the anisotropic part, it can be achieved that 

the angular dependence of the RPS will be close to isotropic. 

Thus, the calculation speed can be significantly increased be-

cause K >> N >> M. 

The isotropic part was distinguished. However, it should be 

defined too. How can it be defined? The unequivocal answer in 

the spatial-angular representation is difficult, but the task is 

greatly simplified for the spectral representation of the angular 

distribution. The more anisotropic the angular distribution is, 

the more smooth is its spectrum. The radiance distribution can 

be represented as polynomial Legendre series: 
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where the assumption is made that the anisotropy in the region 

of small angles is much stronger than the azimuthal asymmetry 

[2], 0
ˆ ˆ( , )  l l . 

The spectrum Zk() of the anisotropic part of the solution 

slowly monotonically decreases from the index k. This allows 

us entering a continuous function Z(k,). Since the function 

slowly and monotonously decreases, the following expansion in 

Taylor series is valid: 
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Substitution of (14) into an infinite system of differential 

equations for solving the RTE by the spherical harmonics 

method leads [3] to one equation of mathematical physics that 

allows an analytical solution 

  0( ) exp (1 )k kZ x       , (15) 

which is called the small-angle modification of the spherical 

harmonics method (SHM). 

In [8], a comparison was performed of the solution (9) with 

the separation of the anisotropic part based on the SHM (the 

MDOM program) with the main known programs: MDOM with 

the same accuracy in calculating the angular distribution of 

radiance exceeds other programs by 1-2 orders of magnitude in 

computational speed. 

7. Reflection and refraction at the interface of 
two media 

Let us consider a special case of a layer, in which the lower 

boundary reflects according to Lambert’s law and has a reflec-

tance In this case, the boundary condition in (1) on the bot-

tom is the following: 
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The following matrix expressions can be obtained by substi-

tuting the azimuthal representation of radiance (5) and discrete 

ordinates, and the integral (16) by Gaussian quadrature: 

 0 0 00 : C ( ) 2 R C ( ); 0 : C ( ) 0Lm m           , (17) 

where the matrix of Lambert reflection R L  consists of the same 

N/2 lines  j jw . 

In accordance with MOM (12), we obtain the following ex-

pression for the reflected component of zero harmonic: 
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where the index 1 related to the layer is omitted due to the ab-

sence of need. All other azimuthal harmonics m>0 are deter-

mined by the expression of a single-layer medium (9). 

This approach does not work on the boundary with refrac-

tion, since the directions of the rays vary according to the 

Snell’s law: 
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where n1, n2 are refractive indices of the medium, and the corre-

spondence of ordinate directions is violated. A solution to this 

problem was proposed in [12]. 

Let us consider in more detail the refraction on the practi-

cally important case when n1 < n2. The first medium is called 

atmosphere for certainty (index a), na=1, and the second media 

is the ocean (index o) with no>1. The cosines of the rays with 

the axis OZ in both media according to (19) will be related to 

each other by the expression: 
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21 1o t on      im 

the ocean medium: the rays do not exit the ocean, but are ideal-

ly reflected again into the ocean. Boundary conditions for the 

total internal reflection region are formulated without problems. 

Then the scattering integral can be represented as the sum of 

three integrals taking into account the total internal reflection 

region: 
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The first and last integrals are related to the region of re-

fraction, and the second relates to the total internal reflection 

region. For the second integral, we perform the transformation: 
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which makes it possible to apply a double Gaussian quadrature 

with Nt nodes and subsequently move in this zone to two 

streams of ordinates C , Ct t

  , which are connected by an ideal 

mirror reflection at the boundary. 

For the first and last integrals in (21), we make the trans-

formation of the integration variable to a by expression (20): 
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It is obvious that in the transition to discrete ordinates a 

complete correspondence is established between atmospheric 

ordinates С , Сa a
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tion in MOM will be valid for them. The introduced values also 

allow us to write down the condition at the atmosphere-ocean 

boundary: 
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, R, T  are Fresnel 

reflective matrices. 



8. Synthetic iterations method 

Fig. 1 shows a comparison of the calculations in MDOM of 

radiance angular distribution reflected by a layer for different 

sets of parameters N and M. It is easy to see that the calculation 

of the almost complete distribution of the viewing angle is 

much faster than the calculation of individual small sharp 

peaks. The difference in calculation time t is more than 150 

times. What is the reason? 

The angular distribution of the RPS is actually close to iso-

tropic, but with some small ripples. A fair question arises: how 

many discrete ordinates N are necessary to represent this small 

ripple? Since the RPS is a smooth function, its expansion into a 

series of polynomials Legendre has a finite number N: 

 
1

2 1
( , ) P ( )

2

N
m

m k k

k

k
L L




    . (25) 

All polynomials Legendre of the order < N can be expressed 

through an N+1 polynomial order: 
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where i are the roots of the polynomial PN+1(). 

Accordingly, this leads to the expression: 
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which corresponds to the Lagrange interpolation formula for the 

function L(,). 

 
Fig. 1. Comparison of the reflected radiance angular distribu-

tions.  Direction to Nadir = 180о. Solid line: N=801, K=299, 

M=256, Δt=52.3 s. Dashed line: N=101, K=299, M=8, Δt=0.32 

s. 

The latter relations are the analogue of the Nyquist-Shannon 

theorem on samples for the angular spectrum of the angular 

distribution over polynomials Legendre. Hence: 

1. MDOM method provides average convergence; 

2. All methods for isolating the anisotropic part are equivalent 

to each other in a uniform metric; 

3. To achieve good convergence in a uniform metric, the sam-

pling interval should correspond to the angular size of the 

smallest part, which should be reproduced on the radiance 

distribution. 

When implementing a multilayer surface model taking into 

account diffuse reflection from the lower boundary and reflec-

tion from the upper boundary according to the Fresnel law in 

the Matlab software, the question arose of possible acceleration 

of calculations without loss of quality. The number of discrete 

ordinates N determines the size of the matrices with which the 

calculations are performed. That is, a decrease in N would 

speed up the calculations. Thus, the main question is: how not 

to lose in quality? The synthetic iterations method is the answer 

to this question. 

The synthetic iterations (SI) method was proposed in nucle-

ar physics [1]. In this case, the iteration splits into two stages. 

At the first stage, an approximate solution is sought that con-

verges well in the average energy metric, and at the second, the 

usual iteration is performed, which significantly increases the 

convergence in a uniform angle metric. Since the developed 

method for solving MDOM has good convergence in the aver-

age metric, we should count on its significant increase in con-

vergence after iteration. 

A numerical comparison of the reflected radiance in the 

first iteration with MDOM is presented in Fig. 2, where t is 

the computation time. 

 
a) full range of viewing angles 

 
b) range in the vicinity of gloria, the designations are the same 

as in Fig. 2a  

Fig. 2. Comparison of synthetic iteration (SI) with MDOM for 

the radiance of the reflected radiation of a layer 

It is seen from the figure that the greatest difficulty for cal-

culating in MDOM is the region near gloria (Fig. 2b). To calcu-

late this region in the MDOM program, N = 801 and M = 256 

are required, which corresponds to a sampling step of less than 

0.5°. To achieve the same accuracy within the framework of 

synthetic iteration, only N = 11, M = 4 is necessary, which re-

duces the computation time by almost 60 times. Accordingly, 



the synthetic iteration from MDOM allows us to calculate the 

angular distribution of radiance with an accuracy in the uniform 

metric of no worse than 1% at a counting time of no more than 

1 second. 

This method allowed to significantly increase the speed of 

calculations carried out in the Matlab software using the created 

model. 

9. Conclusion 

The mathematical model of the luminance factor for a mul-

tilayer medium bounded above by the Fresnel and below Lam-

bert surfaces is implemented. The calculation is optimized in 

terms of speed and accuracy of calculation. The obtained de-

pendencies and characteristics qualitatively coincide with the 

expected ones. The model must be filled with parameters of real 

media, for which it is planned to experimentally test the model. 

In the future, it is also planned to take into account reflection 

from a randomly uneven border and polarization. 
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