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In this study, a mathematical model of the nonlinear vibrations of a nano-beam under the action of a sign-variable load and an 

additive white noise was constructed and visualized. The beam is heterogeneous, isotropic, elastic. The physical nonlinearity of the 

nano-beam was taken into account. The dependence of stress intensity on deformations  intensity for aluminum was taken into account. 

Geometric non-linearity according to Theodore von Karman’s theory was applied. The equations of motion, the boundary and initial 

conditions of the Hamilton-Ostrogradski principle with regard to the modified couple stress theory were obtained. The system of 

nonlinear partial differential equations to the Cauchy problem by the method of finite differences was reduced. The Cauchy problem 

by the finite-difference method in the time coordinate was solved. The Birger variable method was used. Data visualization is carried 

out from the standpoint of the qualitative theory of differential equations and nonlinear dynamics were carried out. Using a wide 

range of tools visualization allowed to established that the transition from ordered vibrations to chaos is carried out according to the 

scenario of Ruelle-Takens-Newhouse. With an increase of the size-dependent parameter, the zone of steady and regular vibrations 

increases. The transition from regular to chaotic vibrations is accompanied by a tough dynamic loss of stability. The proposed method 

is universal and can be extended to solve a wide class of various problems of mechanics of shells.  

Keywords: visualization of scenarios of transition of vibrations into chaos, geometric nonlinearity, nano-beam, inhomogeneous 

material, micropolar theory, Euler-Bernulli model. 

 

1. Introduction 

Visualization behavior of elements of 

microelectromechanical systems (MEMS) in the form of beams, 

plates and shells under the action of various kinds of 

loads currently is an actual scientific problem [1,2,7,8,9,18]. 

One of the ways of MEMS evolution is to reduce their 

mechanical components to the nanoscale and to reduce their 

mass. Already now about 10% of GDP in European countries is 

directly related to micro and nanoengineering. It is expected 

that the potential development of traditional microelectronics 

will be exhausted in the coming decade. Further development of 

electronics is associated with the development of 

nanotechnology. The scope of the NEMS is very wide. 

Nanosensors (cantilevers, nano-suspensions, resonators, etc.) 

and nanoactuators (nano-motors) are used in physics, biology, 

chemistry, medicine (diagnostics, cellular nano- and 

microsurgery, drug delivery, the affected area of the body), 

electronic industry, criminology. Despite all the advances in 

nanotechnology, any work at the molecular level remains 

extremely complex scientific problem. NEMS operate on the 

basis of other physical laws than MEMS.  

The classical theory of continuum mechanics is not ideal for 

analyzing the dynamic properties of nanostructures since size 

effects significantly affect the dynamic behavior of 

nanostructures. For objects with ultra-small dimensions, it is 

necessary to use more complex theories, for example, modified 

couple stress theory, nonlocal theory of elasticity, surface 

theory of elasticity, etc. A very important scientific problem is 

taking into account the heterogeneity of the material when 

designing the NEMS element, i.e. Dependencies of physical 

properties of a material on deformation, spatial coordinates and 

time There are a large number of studies devoted to the size-

dependent behavior of beams. Longitudinal vibrations of 

heterogeneous rods at nano-dimensional levels using , nonlocal 

theory of elasticity were studied [6]. It was shown that the 

heterogeneity of the material can strongly influence the 

longitudinal vibrations of nano-rods. Depending on the value of 

the coefficient of elastic modulus, the natural frequency of 

nano-rods may decrease or increase with an increase in the 

number of degrees of freedom [19]. In addition to the 

longitudinal vibrations of nano-rods, wave propagation was also 

investigated [4]. It was found that the scale parameter strongly 

affects the propagation of waves in nano-rods. 

Various modified models of nano-beams were proposed for 

the study of bending using non-local mechanics of solid [3, 17, 

16, 20]. More recently, a beam model based on a nonlocal 

gradient stress theory was proposed in [10, 11] to study the 

mechanical behavior of inhomogeneous nano-beams. 

The article [15] is devoted to the development of a linear 

theory for the analysis of the behavior of beams based on the 

mechanics of a micropolar continuum. The nature of bending 

and longitudinal waves in a micropolar beam of infinite length 

was investigated. The deformation of a cantilever beam under 

the action of a transverse concentrated load on the free edge 

was also studied. In [13], the size-dependent behavior of 

Timoshenko beams using a combination of micropolar theory 

with nonlocal elasticity was modeled. The authors of [14] 

proposed a new numerical approach to the analysis of the 

bending of Euler – Bernoulli nano-beams in the context of 

integral non-local models. The authors of [12] studied the 

nonlinear vibrations of functionally graded nano-beams based 

on an elastic base and subjected to a uniform increase in 

temperature. The effect of small size, which plays a significant 

role in the dynamic behavior of nano-beams, is considered here 

using an innovative non-local integral model. The main partial 

differential equations of the theory of Bernoulli-Euler beams 

using von Karman relations were obtained. 

The review of articles confirms the need to visualize the 

behavior of NEMS components using methods of nonlinear 

dynamics and taking into account the specifics of small sizes of 

NEMS objects and the operating conditions of NEMS. 

Basically, the visualization of the frequency spectrum of the 

signal is carried out only using the Fourier spectrum. Use for 

visualization of modal, phase portraits, cross-section, Poincare 

mapping, spectrum of Lyapunov exponents, etc. will allow you 

to explore the phenomenon of determinate chaos, to determine 

its truth. For a qualitative assessment of the transition of the 

oscillations of the nano-system into chaos, it is necessary to use 

tools like Fourier analysis and wavelet analysis, based on the 

strengths of each of them, when visualizing. The methods 

proposed in this work for visualizing the behavior of NEMS 

elements can be useful in non-destructive testing systems, as 

well as for designing NEMS. 
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1. Problem statement  

In the modified couple stress theory [21], the stored strain 

energy П for an elastic body with infinitely small strains is 

written as 
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where: ij  components of the strain tensor and ij  

components of the symmetric curvature gradient tensor, which 

are defined as follows:  
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here u  - displacement vector with components 
iu , 

 , ,i x y z , θ  is an infinitely small rotation vector with 

components i . Denote ij , ij , ijm  and ij  respectively 

components: classical stress tensor σ , strain tensor ε ,  deviator 

part of a symmetric tensor moment higher order m  and the 

symmetric part of the curvature tensor χ ; 
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- Lame parameters, which also 

depend on the coordinates and intensity of deformations; ij  - 

Kronecker symbol. The parameter l appearing at the moment 

of higher order ijm  is an additional independent material 

parameter of length. It is connected with the symmetric tensor 

of a rotation gradient. In this model, in addition to the usual 

Lame parameters, one more scale parameter of length l  [7] 

must be taken into account. This is a direct consequence of the 

fact that in couple stress theory, the strain energy density 

function is a function of the strain tensor and the symmetric 

curvature tensor. It does not explicitly depend on rotation (the 

asymmetric part of the strain gradient) and the asymmetric part 

of the curvature tensor.  

Consider a beam of length a , constant thickness h . The 

beam occupies the area ( , ) | 0 ,
2 2

h h
x z x a z

 
       

 
. We 

introduce the notation: 0h  – beam thickness in the center, 0b  - 

beam width in the center,  30 ,u x t  – bend deflection,  10 ,u x t

– midline displacement. Beam designed from isotropic but 

heterogeneous material ( , , )iE x z e  and ( , , )ix z e  – module 

elasticity and Poisson's ratio, depending on the coordinates and 

intensity of deformations 
ie , according to the deformation 

theory of plasticity,   – coefficient damping,  – unit 

weight   of the material, g  – acceleration gravity. Euler-

Bernoulli hypothesis was applied.  

Geometric nonlinearity is taken into account according to 

the Karman model.  

Nano dimension is taken into account by the modified 

couple stress theory. 

To account for the physical nonlinearity of the material of 

beams, the deformation theory of plasticity and the method of 

variable parameters of elasticity are used [1]. Diagram of 

deformations material ( )i i   can be arbitrary, but in numerical 

examples it is accepted for pure aluminum in the form: 
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se  and  
s – strain intensity and stress yields depending from 

longitudinal (x) and transverse (z) coordinates. 

Equations of motion,  the boundary and initial conditions of 

the beam follow from the Hamilton – Ostrogradski variational 

principle.  
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The system (4) is reduced to dimensionless form 

using the following dimensionless parameters: ,
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  where  0 Sin pq q t  - 

load acting on the beam, 
0q  and p  - amplitude and load 

frequency, respectively.  

To system (4) are added boundary conditions rigid fixation  
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and initial conditions 
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2. Solution methods  

The integration of equations (4) with the boundary (5) and 

initial (6) conditions is carried out by the finite difference 

method. To improve accuracy, central difference schemes for 

derivatives have been applied. 

The convergence of the method along the spatial coordinate 

was studied. To obtain results with the required degree of 

accuracy, it suffices to split the integration interval [0, 1] into 

120 parts. It is necessary to solve an extensive system of 

equations. At each time layer, the iterative method procedure 

variable parameters Birger's elasticity [5] was built. The value 

of the Young's modulus in the spatial grid  ,x z was refined. 

The stability of the solution in time, i.e. the choice of the time 

step is carried out according to the Runge principle. 



The reliability of the numerical results is proved by the 

complete coincidence of the solutions obtained by the method 

described above with the results obtained using the Bubnov 

form finite element method in the spatial coordinate.  Then the 

Cauchy problems were solved using the Runge – Kutta type 

method from the second to the eighth order of accuracy.  

3. Numerical results  

Visualization of the calculation results for a rigidly clamped 

geometrically and physically nonlinear beam, to which a 

uniformly distributed alternating load with a frequency 

5.1p    is applied, which coincides with the frequency of 

linear natural vibrations, was based on the methods of nonlinear 

dynamics. The parameters of the experiment: the material is 

aluminum, the ratio of length to thickness 𝜆=50. 

The aim of the study was to visualize the scenarios for the 

transition of vibrations of nano-beams from harmonic to 

chaotic, depending on load changes. As well as visualizing the 

impact on accounting scenarios moment stresses, i.e. the value 

of an additional parameter l  related to the tensor gradient 

curvature χ . 

To achieve this goal, the following visualization tools were 

used: signals, phase and modal portraits, Poincaré sections and 

maps, autocorrelation function, Fourier spectra, 2D and 3D 

wavelet spectra constructed on the Morlet mother wavelet were 

analyzed. Also changes the sign of the the largest Lyapunov 

exponent (LLE) in time, depending on the value of the 

additional independent length parameter l , was studied. 

At the table shows the most informative results for 0l  . 

Table 1. Scenario of transition to chaos at 0l  . 
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The transition from harmonic vibrations to chaotic is 

obtained according to the scenario of Ruel-Takens-Newhouse 

with 0; 0.1; 0.3; 0.5l  . Thus, an independent frequency and 

linear combinations of the excitation frequency and independent 

frequency appear. 

Visualization of the nature of vibrations at the amplitude 

of the load 
0 84q   (Table 1), based on the power spectrum, it 

shows harmonic vibrations. However, visualization based on a 

phase portrait demonstrates the presence of additional 

frequencies, since the phase portrait has a thickening. For a 

qualitative analysis of the behavior of the system, several 

visualization tools must be considered together. With increasing 

load amplitude, the Fourier spectrum reflects the appearance of 

harmonics in the signal at independent frequencies. With a 

further increase in the amplitude, the power spectrum shows a 

continuous pedestal, and the phase portrait shows a solid spot. 

Which indicates the chaotic state of the system. 

With increasing  l  the load value at which the transition 

to chaotic vibrations takes place, because flexural rigidity of the 

system increases. 

4. Conclusion 

This study presents a visualization of nonlinear vibrations 

of a flexible, inhomogeneous, rigidly clamped at the ends of a 

nano-beam under the action of a uniformly distributed 

alternating load. Using the Fourier spectrum and phase portrait 

as a means of visualization, it was possible to determine the 

transition from harmonic to chaotic vibrations according to the 

scenario of Ruel-Tackens-Newhouse. Accounting moment 

stresses and an increase in the value associated with this 

parameter does not change the scenario of the transition of 

system vibrations to chaos. 
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