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On the basis of the kinematic hypotheses of the Kirchhoff-Love built a mathematical model of micropolar cylindrical meshed panels 

vibrations under the action of a normal distributed load. In order to take into account the size-dependent behavior, the panel material 

is considered as a Cosser’s pseudocontinuum with constrained particle rotation. The mesh structure is taken into account by the 

phenomenological continuum model of G. I. Pshenichnov. For a cylindrical panel consisting of two systems of mutually perpendicular 

edges, a scenario of transition of oscillations from harmonic to chaotic is constructed. It is shown that in the study of the behavior of 

cylindrical micropolar meshed panels it is necessary to study the nature of the oscillations of longitudinal waves. 
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1. Introduction 

To solve the problems of static and dynamic mesh plates, 

panels and shells, mainly two computational models are used. It 

is a phenomenological continuum model and a discrete model. In 

the continuum model, a mesh object consisting of a regular 

system of frequently located edges of one material is replaced by 

an equivalent solid object having some averaged stiffness 

depending on the arrangement of the edges and their stiffness 

[1,3]. In the discrete model, the edges are represented by beam, 

shell, or three-dimensional finite elements [2,5,7,11]. 

Eachoftheseapproacheshasitsadvantages [4]. 

Progress in micro-and nano-technologies leads to the interest 

of scientists not only to the behavior of full-size mechanical 

systems in the form of plates and shells [13,14,16], but also the 

need to create mathematical models that take into account the 

scale effects at the micro and nano level [10,12,19]. In most 

works on this subject linear models are used for numerical 

analysis [15,17,18,21,22]. However, there are experimental data 

confirming the need to take into account the nonlinearity in 

modeling the behavior of the objects under consideration [20]. 

Despite the large number of works devoted to the size-

dependent behavior of mechanical objects in the form of plates, 

panels and shells, studies of the behavior of mesh plates and 

shells based on theories that take into account the effects of scale 

is very small [6,8,9]. 

2. Problemstatement 

A mathematical model of oscillations of a micro-polar 

flexible rectangular cylindrical panel under the action of a 

transverse distributed pressure occupying a region in space 
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is constructed. 

The panel consists n  of sets of densely arranged edges of the 

same material, which allows the use of a phenomenological 

continuum model. Taking into account the Kirchhoff-love 

hypotheses, the strain tensor components are written as: 
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Where , ,u v w  - axial displacements of the middle surface of the 

plate in the directions , ,x y z respectively, yk - geometric 

curvature parameter. 

To account for the size-dependent behavior, a non-classical 

continuum model based on the Cosser medium is considered, 

where, along with the usual stress field, torque stresses are also 

taken into account. This assumes that the displacement and 

rotation fields are not independent. In this case, the components 

of the symmetric bending-torsion tensor are written as follows: 
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We take the defining relations for the panel material in the 

form:    
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где ij  - the 

components of the stress tensor, ijm components of the moment 

tensor of higher order, E  - Young’s modulus,   - Poisson’s 

ratio. 

The equations of motion of a smooth plate element 

equivalent to a mesh one, boundary and initial conditions are 

obtained from the Hamilton – Ostrogradsky energy principle: 
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Boundary conditions: 
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Here the expression for the classical force and torque: 
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as well as expressions for the forces caused by instantaneous 

stresses:  
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The stresses arising in the equivalent smooth panel 

associated with the stresses in the edges that make up the angles 

j with the abscissa axis will have the form: 
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 where ja  - 

distance between edges of j-th family, j – the thickness of the 

ribs, voltage index j are rods. The physical relations for the mesh 

plate are determined based on the Lagrange multiplier method:
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expressions for classical forces and moments, as well as the 

forces caused by the moment stresses of the cylindrical mesh 

panel will take the form: (the upper index shows the account of 

the mesh structure): 
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Substituting expressions (2) into equations (1), we obtain a 

resolving system of equations of motion for a smooth micropolar 

cylindrical Kirchhoff-Love panel equivalent to the original mesh 

panel. 

In this model, the rigidity of the rods to bend in a plane 

tangent to the middle surface of the panel is not taken into 

account, so the orders of systems of differential equations 

describing the behavior of grid and solid panels coincide. At the 

same time, the formulations of the boundary conditions of the 

corresponding boundary value problems coincide. 

The scenario of transition of oscillations from harmonic to 

chaotic cylindrical panel with two families of edges is 

investigated 
1 245 , 135o o   , 

1 2    , 
1 2a a a  (Fig 

.1). Taking into account dimensionless parameters: 
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x cx , y by , w hw , h  , a ha , l hl , where   - 

dissipation factor,   - the density of the panel material, 

 0 Sin pq q t  - external normal load, 
0q and p  - its intensity 

and frequency, t  - time. The equations of motion of the element 

of the considered micropolar mesh cylindrical panel will take the 

form (the line above the dimensionless variables is omitted): 

 
Fig.1.Panel mesh geometry. 
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Boundary conditions – rigid sealing at all ends of the panel: 
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Initial conditions – zero. 

The nonlinear partial differential problem in spatial 

coordinates is reduced to an ordinary differential problem by the 

finite difference method with the second-order approximation of 

accuracy. To do this, the derivatives of spatial variables are 

replaced by finite central differences. The Cauchy time problem 

is solved by the Runge-Kutta method of the fourth order of 

accuracy. 

3. Scenarios of transition of oscillations of a 
cylindrical panel to chaos 

To visualize the scenarios of transition of oscillations of a 

micropolar mesh cylindrical panel from harmonic to chaotic for 

deflection and displacement, the following characteristics were 

constructed and analyzed: signal, Fourier spectrum, wavelet 2D 

and 3D spectra based on the mother wavelet Morle, phase and 

modal portraits, signs of largestLyapunov exponents. 

The following is a scenario of transition of oscillations of a 

grid cylindrical micropolar panel from harmonic to chaotic 

(Table 1-3).  

The parameters of the experiment: 0.5l  , 1c b  , 

0.2h  , 1  , 0.2a   , 0.3  , 5p  , [0;512]t , 

0 [0;200]q  .From the data collected in the tables it can be seen 

that in addition to the characteristics of the deflection, the nature 

of the oscillations of the longitudinal waves should be studied, 

which will allow a more accurate picture of the nature of the 

oscillations of the system. At load amplitude 𝑞0 = 0.1, the 

Fourier power spectrum for the deflection shows harmonic 

oscillations, but the Lyapunov exponent for the deflection is 

positive. This discrepancy is explained by the fact that the signal 

of the displacement function u has a chaotic component at low 

frequencies. Harmonics at the same frequencies are present in the 

deflection signal, but the Fourier spectrum does not display them. 

These frequencies demonstrate the wavelet spectrum, so it is 

necessary to consider the Fourier spectrum and the wavelet 

spectrum together. As the load increased, a harmonic appeared 

in the signal at an independent frequency 𝜔1. When the 

amplitude of the load 𝑞0 = 190  phase portrait of the deflection 

shows chaotic oscillations and the power spectrum of the Fourier 

transform of the oscillations at two frequencies.  Thus, to 

determine the type of deflection oscillations, it is also necessary 

to consider the function of moving by 0x or 0y. 

 

Table1. The characteristics of the deflection function w  and 

the displacement function u  

𝑞0 = 0.1, 𝜔𝑝 = 5 

Fourierspectrum Phaseportrait 

w(0.5;0.5,t) 

 
 

u(0.5;0.5,t) 

  

Table2. The characteristics of the deflection function w  and 

the displacement function u 

𝑞0 = 130, 𝜔𝑝 = 5 

Fourierspectrum Phaseportrait 

w(0.5;0.5,t) 
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Table2. The characteristics of the deflection function w  and 

the displacement function u 

𝑞0 = 190, 𝜔𝑝 = 5 

Fourierspectrum Phaseportrait 

w(0.5;0.5,t) 

 
 

u(0.5;0.5,t) 

 
 

 

4. Conclution 

A mathematical model of nonlinear oscillations of a cylindrical 

panel of a grid structure is constructed. For a deep analysis of the 

behavior of a micropolar mesh cylindrical panel, it is necessary 

to visualize the characteristics of not only the deflection function, 

but also the displacement function, as well as to consider the 

entire apparatus of nonlinear dynamics in the aggregate. 
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