
Activity Analysis in Software Visualization Systems

V.L. Averbukh1,2, N.V. Averbukh2, I.L. Gvozdarev2, G.I. Levchuk2

averbukh@imm.uran.ru|natalya_averbukh@mail.ru|ilyagvz@gmail.com|levchukgeorgy1@gmail.com
1IMM UB RAS, Yekaterinburg, Russia;

2Ural Federal University, Yekaterinburg, Russia.

The goal of this paper is to identify the task for researching the activity of software engineers using software visualization systems

based on virtual reality. It discusses the activity theory statements developed in our country as far back as in the past century. The paper

describes possible tasks to analyse the activity of software engineers using such systems. It provides examples illustrating the use of the

systems based on virtual reality for the purposes of software complexes representation and visual programming. The activity of the user

of such systems is analysed.

Keywords: software visualization, visual programming, activity theory, virtual reality.

1. Introduction

Over the past several years a whole range of interesting

examples have emerged of using virtual reality in software

visualization systems. Of great importance is the evaluation of

the efficiency of such systems due to the possibility of using them

in software development. Before we proceed to efficiency

evaluation, we need to analyze software development as a

process. Such analysis should be carried out taking into account

the conditions in which this process takes place and, in particular,

the influence of virtual reality, its usefulness and applicability in

the activity of various categories of software engineers.

The activity theory, which has been developed in the Russian

psychology since the 1930s, can be offered as a tool for the

analysis. This theory makes it possible to study the working

process from the viewpoint of goals and goal-setting and, at the

same time, to structure it by defining cognitive constituents –

actions – which, in turn, consist of operations. This provides the

opportunity to analyze various elements of the development

process using the activity theory tools. This type of analysis

prioritizes the process of goal-setting by the software engineer

and choosing the actions that will lead to accomplishment, which

makes it possible to assess the efficiency of using a certain

development tool.

Describing a software engineer’s activity is a complex task,

even in the context of technical development in the 1950s – 60s.

A computer program describes processes that are launched on a

computer. The task of an engineer is to correctly describe this

process, and then to test and debug the program. Nowadays, the

activity of a software engineer has become much more complex.

Software developers are divided into a whole range of

specialties; for instance, a software developer as such, a coder, a

tester etc. Each of these specialties presupposes its own type of

activity, with its own goals, tasks, including certain actions and

operations.

There have been attempts in the IT industry of creating a

strict description of each type of work in certain companies. In

other companies no software engineering work formalization

took place.

The activity of various types of software developers

combines versatile work with code, the creative factor,

interaction with colleagues and many other things. That is why it

is extremely hard to describe a software engineer’s activity in

full. This paper sets a narrower task of describing the work of a

user of software visualization systems based on virtual reality

systems. It is noteworthy that currently such systems cannot

provide fully-featured development of all the aspects of software.

That is why we will describe several types of activities for

software engineers, testers and, probably, engineers of a

relatively lower level in the system of software visualization with

the use of virtual reality. Our goal is to elicit common

opportunities of such systems, their bottle necks, problems which

users (that is the software engineers themselves) face, and, of

course, those advantages that can be enjoyed when using virtual

reality for software development.

2. Activity theory

Before proceeding to the use of the activity theory in the

fields of software visualization and visual programming, let us

provide a general idea of this psychological paradigm. The

activity theory was developed in the first half of the XX century

by A.N. Leontyev and S.L. Rubinshtein [5, 8].

The central notion determining a person’s activity is a

conscious goal that a person establishes for themselves. This

activity is also defined by the person’s motives, their personal

qualities and conditions in which the activity occurs. The

analysis of the activity should be carried out in two directions.

On the one hand, it is necessary to set a goal, motives and

conditions for the activity. Let us provide a real-life illustration:

the same activity will differ when carried out in the freezing cold,

in the heat or in comfortable temperature. Also, when it comes to

a specific person, it is preferable to take into account their

personal qualities. Some types of activities, on the contrary,

require certain personal qualities from the operator. Thus, for

instance, the work of a corrector requires attentiveness, and any

creative work, obviously, requires creativity.

In the context of this paper’s topic, the activity carried out

fully or partially in virtual reality will differ from the activity

carried out by a software engineer at their usual desk.

The second direction involves dividing activity into

reportable actions and dividing the latter, in turn, into operations.

It is understood that the same actions may include different

operations and, on the contrary, the same operations may be part

of different actions. It is important to take into account the fact

that carrying out an action is conscious and purposeful, as well

as all activity in general.

A person establishes an intermediary goal, which defines the

action itself. When the action is fulfilled, the goal is shifted

forward, and the previous action becomes the means of carrying

out another action aimed at a more general goal. This way, the

action aimed at smaller goals is deleted from the conscious and

transits to the unconscious. Thus, a hierarchical structure is

established: activity – conscious actions – operations. In other

words, activity breaks down into a number of conscious and

motivated actions, which are realized by means of a combination

of operations. (Rubinshtein, 2005)

Focusing on activity paradigm in developing a software

system could help the developer in creating such conditions, so

that the user’s tasks (the user in this case being a software

engineer of some kind, as we are talking about developing

software visualization systems) are connected only with direct

goals in a certain programming field. For this, a rather precise

description of the activity of various professionals (for instance,

software engineers, developers, encoders etc.) is necessary,

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

including the type of goals and tasks set within the lines of their

direction, the type of actions and operations they carry out. Of

interest would also be research into motivation, professionally

critical qualities (for example, what directions require diligence,

criticism, creativity etc.) and other psychological characteristics.

3. The task of analyzing the activity of
software engineers

The task of analyzing software engineers’ activity has been

established in previous papers, [1]. In this paper, we want to

provide a case study for such analysis. The systems to be

presented in this paper represent the conditions for the activity,

as well as the environment and the tool set. It is important for all

the components to conform to the goal. It is noteworthy that a

goal perceived by the individual determines the whole activity.

This is why environment developers need to envisage both the

goal and the tasks, the accomplishment of which leads to

achieving the goal; they need to think through the actions which

the user will carry out and the operations which compose these

actions.

When working in the real world a person can choose actions

and operations themselves (although the range is somewhat

limited by the capabilities and features of the tools), whereas

when working in virtual reality, everything should be thought

through by the developer. Their job will be much more efficient

if they keep in mind the diagram of the activity analysis: the goals

established by the software engineer using their system; the tasks

established for them; the actions needed to fulfill the tasks; the

operations composing the activity.

A software engineer’s activity is vast and versatile; however,

this paper focuses on the actions carried out in virtual reality, and

it considers them as a separate activity. We will describe the

goals established by a developer and a tester of a visual software

system, as well as by a software engineer working in visual

programming. We will describe the tasks that can be established

within virtual reality and the operations that may be included into

it. The specific feature of activity in virtual reality is the fact that

some actions are carried out on several levels simultaneously. On

the one hand, a software engineer carries out an action inside

virtual reality, for instance, moving around the city or

approaching a planet. On the other hand, he or she makes

physical movements using certain controllers. The goal here is

not enjoying the attraction or believing the events are real (as in

entertainment environments), but understanding the software

code for further work with it. That is why operations carried out

when interacting with the system can be done by means of usual

computer devices such as a keyboard and a mouse; although

specific VR controllers can also be used. The third level of

operations includes those changes that occur on the level of

software code. Detailed development of operations should be

carried out with due regard for both the specific software system

and the supposed user (software engineer).

4. Software visualization based on virtual
reality

About a decade ago papers describing the opportunities of

virtual reality in the field of software objects representation on

the basis of city and landscape metaphors started to emerge [3,

4]. One of the most popular metaphors for software visualization

systems using the means of virtual reality is a city metaphor. For

example, this metaphor is used by two systems with similar

names worth mentioning: VR City [10] and CityVR [7]. The

systems based on virtual reality also use other metaphors. In 2018

City Metaphor was used for visualizing software [9].

From the viewpoint of a software engineer’s work process

description, the developed systems of software product

visualization and visual programming based on virtual reality

media are of interest for their brief descriptions of user’s

impressions while working with such systems. The article [7],

discusses an approach towards software development called

gamification. This approach presupposes the creation of tools,

which give software developers an interface similar to computer

games. An analysis has been carried out of the way software

developers interact with software visualization systems. The

developers were excited, they warmed to their work, they felt a

certain challenge, experienced immersion into the virtual world

with retaining control over the system. See also paper [6]. During

the interaction they spent a considerable amount of time on

navigation in the virtual world and on choosing the right elements

of the program. The users realized that time had gone by quicker

than it does in reality, that is why they were willing to spend more

time using software media to solve the problem of understanding

the task. At the same time, we have not been able to find a full

description of a software engineer’s activity in such systems yet.

Further, we will describe the prototypes of software complexes

visualization systems and visual programming systems, and we

will attempt to describe the actions, operations, as well as goals

and motivations of the users of such systems.

We use a prototype in our research based on an extended city

metaphor.

This prototype displays a system visualizing three-

dimensional presentation of the code structure in virtual reality

based on an extended city metaphor (a city with active agents).

Part of the system responsible for visualization, shaping and

working in virtual reality is implemented via Webgl and three.js

libraries. The system (connecting the software structure

visualization in virtual reality with file representation of the

code) is implemented on ‘js’ and C#. Also implemented is the

user mode with different levels of access and different types of

user accounts (an administrator, who can change access

authorization for projects and add users; a developer, who works

with the code; a tester, who ‘catches bugs’, i.e. finds mistakes

and provides information about them to the developer). This

paper will demonstrate the activity of a developer and a tester.

Let us describe the conditions in which the activity occurs. A

user in the role of a developer opens the project represented as a

city (see Fig. 1). The user’s movements in the virtual

environment are carried out by means of a camera moving around

the virtual city, its buildings and rooms inside the buildings. The

movements are carried out by means of a keyboard or a mouse.

The class is represented as a building. it has several floors, which

is connected with the fact that for each class there are two

representations for the descriptions. In a simple representation,

each single method is described in a room or on a specific floor.

There is also a logical description of the types of data the class

works with, the type of methods it uses, and possible applications

of this class.

The user may have the role of a tester. Let us consider a

simple example – the task of finding the root of a number. The

tester enters a number; the active agent enters the corresponding

method in the examined class. This is displayed as the agent

entering the building which represents the class (see Fig. 1, 2),

going along the corridor and choosing the right room (see Fig.

3). The agent enters the room (method) through the door and exits

it in the same way. All this is displayed as the agent entering with

a number written on him and exiting with the root of this number.

And the wall of this building (Fig. 4) illustrates the way this

method influences memory: what load there is, a brief

characteristic of the weight of this number (as there can be very

big numbers, which put a heavy load on the processor); and a

brief description of the way this method finds the root from this

number.

Fig. 1. Presentation of a software project as a city in virtual

reality and the inner part of the structure of the code with the

figure of the active agent

Fig. 2. An entrance into the building describing the 'boolean’

class

As a result, the tester understands the way this method works,

the way the program works. Visual manifestation makes it

possible to quickly understand whether the program works

correctly.

The city metaphor makes it possible to visualize larger

volumes of data in a much denser way. Virtual reality allows

information perception on several levels. One can inspect all the

procedures step-by-step due to agent movements. There is an

opportunity of working within the method, watching the

elements go through all the procedures and evolve.

In the work of a usual program, the system takes the code text

and transcodes it into computer code. In our system, each method

has its own name and place in the code, and the rooms in the

buildings of the city are named accordingly. A software

developer can watch the program function in order to work out

the code and its structure, which offers an advantage over reading

the code to decide on further development.

At this point, there is no possibility to interfere with the

program from virtual reality. These possibilities are to be further

extended.

Each type of software engineer faces similar tasks in their

line of work, which have no critical differences.

A software engineer’s activity is generally (not only in virtual

reality) carried out in the following way: an engineer uses two

screens, one of which is connected with VR glasses and shows

the city, while the other one shows the code. The engineer

switches between the systems. He or she can launch the program

and watch it work in virtual reality. Upon discovering the

unrealized methods, an engineer switches to the second screen

and searches the web for the possibility of using ready-made

methods. Then he or she returns into virtual reality and watches

the way they work to make a decision on whether they need

changes or enhancements.

Fig. 3. A corridor with a view of the entrance into the

‘toString()’ method from the ‘boolean’ class in the building

sectional view

Fig. 4. A view of the wall in a room with a visual and textual

description of the program elements

5. Visual Programming

The developed system of visual programming can be used for

creating object-oriented programs. Such programs have a certain

inner structure and hierarchy, a link between the objects, an

ordered set of operations. The goal of this project is to reduce the

number of intermediaries between the software engineer and the

program idea. Text is not the most obvious and natural means of

translating the idea into the program. It appears that coding is

better through manipulations with graphic objects. Nowadays,

coding looks the following way: a software engineer enters the

programming environment and starts creating files, writing texts,

creates packages, classes, studies the syntax. This can be avoided

if classes are represented not by a sequence of lines with content

names, not by just by a succession of structures and operators,

but by a graphic object. In order to work in the system of visual

programming a person needs to understand the process of

carrying out a certain action. This understanding should be as

intuitive as possible.

The cosmic metaphor with a heliocentric world view is

chosen as the basic metaphor (Fig. 5). Notably, the programs’

essences are represented by planets, their satellites and rings (like

Saturn’s rings). User classes are represented by planets. Each

planet (class) has two types of views: the open one, which looks

like a planet with satellites and rings (see Fig. 6), and the active

one, where the class is chosen. The active view represents a circle

with a section of rings on the left and structured satellites on the

right. The section of rings represents class methods. Each ring

displays a separate method. Outer rings are public methods,

while inner ones are private and protected. Satellites represent

class fields. From top to bottom, first go the satellites furthermost

from the planet – public fields, then go closer satellites – private

and protected ones. Inside the planet there is also a section of

rings, and an ordered set of satellites (static methods and fields),

belonging to the class itself (Fig. 7). In the center there is a

nucleus containing all the class constructors. [1]

Fig. 5. View of the visual programming environment

If a planet represents a class, then creating a method means

creating a ring for this planet. If a software engineers wants to

create several methods he or she does not need to code similar

elements; he or she can simply click on the planet and then click

on a ring in a dropdown menu for the ‘create a ring’ option. After

that, the engineer sets the types and names of input data, which

is also implemented graphically. The goal of creating this system

is to make coding a simpler and comfortable process. The goal

of a software engineer (when working inside virtual reality) is to

code and enhance the program.

Virtual reality provides visibility and the opportunity to keep

all the created classes, interfaces and their methods in sight, with

the option of in-depth analysis of their structure by means of

zooming the camera in or out, or by clicking on them with a

mouse. Virtual reality provides navigation benefits. One can

travel around the class structure (the cosmic space). The effect of

presence is imitated via the camera. The interaction can be

carried out with VR controllers but, for now, it is performed on a

keyboard (when cording identifiers and creating objects).

The system is implemented in such a way that a writing into

the source file (.java) is made when the user changes the structure

of the program (for example, creates a variable – a satellite or a

planet of a certain type); when the variable is deleted, the writing

from the source file is erased. At present, the file responsible for

the visualization system state and the corresponding source file

should be kept paired up and should not be changed separately

from each other, because there is no interpreter to translate .java

files into graphic objects.

A software engineer performs actions creating planets

(classes) by carrying out operations of choosing interfaces and

typing. One can also choose a project nucleus through the

operation of choosing fields (satellites) and create static methods

(rings).

When analyzing a software engineer’s activity, identifying

the level of operations is quite difficult. Obviously, one cannot

reduce the operations to hand movements, mouse clicks, the use

of keyboard or VR controllers. An operation should be described

on three levels: movements in the material world, changes in

virtual reality, and changes in the code. In the material world, a

software engineer moves the mouse or the controller, clicks the

button. In virtual reality, a cursor, a pointer or any other type of

indicator moves, planets are selected, text boxes appear etc. On

the level of code, a file is created, a name is assigned to it etc.

Fig. 6. View of the class

Fig. 7. Inside the planet

6. Conclusion

This paper describes the activity of software engineers in

software visualization and visual programming systems. Our

primary focus has been on the systems themselves and on the

actions performed there. The goal of an activity is typically quite

obvious; it comes down to achieving the required result (analysis

of the program’s work, understanding, coding a new program

etc.). A crucial part of the activity analysis is elaborating the

motivation. However, when describing an activity of a category

of people (instead of a single person), we face difficulties talking

about motivation, as it is, in effect, a matter of personal business.

That is why we can only talk about the motivation for a certain

aspect of activity. In this paper, we are interested in the

motivation of choosing virtual reality as an environment for

executing an activity. It can be connected with the content of the

activity (comfort, new advantages) or not (‘out of curiosity’, ‘to

brag about using cutting edge technologies’, ‘to try out new

features’, ‘boss’s orders’ etc.).

The developed prototypes use traditional interfaces, but the

use of VR controllers, as well as gesture interfaces, is

contemplated, which may offer considerable advantages in

carrying out operations in virtual reality environments. [2], [11],

[12]. This may reduce the gap between the two levels of

operations: physical actions of the user (software engineer) and

changes in the virtual environment.

Our research is at the initial stage now. Based on the

developed prototypes, experiments should be carried out to study

the activity of future users, different categories of software

engineers.

The work was supported by Act 211 Government of the

Russian Federation, contract No 02.A03.21.0006

7. References

[1] Averbukh V. L., Gvozdarev I. L., Levchuk G. I. Software

Visualization based on Virtual Reality // GraphiCon 2018:

Proceedings of the 28th International conference on

computer graphics and machine vision. Tomsk, 24-27 Sept.,

2018 . P. 77-81

[2] Averbukh V. L. Averbukh N. V., Starodubsev I. S., Tabolin,

D. J. the Use of gestural interfaces in the interaction with

objects // Scientific Perspective – 2014. – No 56(10). – P.

57-66.

[3] Glander, T., Dôllner, J.: Abstract representations for

interactive visualization of virtual 3d city models.

Computers. Environment and Urban Systems 33(5), 375–

387 (2009)

[4] Glander, T., Dôllner, J.: Automated cell-based

generalization of virtual 3d city models with dynamic

landmark highlighting. In: The 11th ICA workshop on

generalization and multiple representation, June 20–21 ,

Montpellier, France. The International Cartographic

Association (2018)

[5] Leontiev A. N. Activity. Consciousness. Personality. M.,

Political. 1975.

[6] Merino L., Bergel A., Nierstrasz O. Overcoming issues of

3d software visualization through immersive augmented

reality. Proceeding of 2018 IEEE Working Conference on

Software Visualization (VISSOFT). 2018. Pp. 54-64.

[7] Merino L., Ghafari M., Anslow C., Nierstrasz O. CityVR:

Gameful Software Visualization // IEEE International

Conference on Software Maintenance and Evolution

(ICSME TD Track). 2017, pp. 633-637.

[8] Rubinstein S. L. Fundamentals of General psychology. -

SPb. Peter, 2005.

[9] Rüdel M.-O., Ganser J., Koschke R. A Controlled

Experiment on Spatial Orientation in VR-Based Software

Cities // 2018 IEEE Working Conference on Software

Visualization (VISSOFT), 2018. Pp.21-31.

[10] Vincur, J., Navrat, P., Polasek, I.: VR city: Software

analysis in virtual reality environment. In: 2017 IEEE

International Conference on Software Quality. Reliability

and Security Companion. pp. 509–516 (2017)

[11] Zhai S., Hunter M., Smith B. A. The Metropolis

Keyboard – An Exploration of Quantitative Techniques for

Virtual Keyboard Design // UIST '00 Proceedings of the

13th annual ACM symposium on User interface software

and technology, 2000. Pp. 119-128.

[12] Zirkelbach C., Krause A., Hasselbring W. Hands-On:

Experiencing Software Architecture in Virtual Reality //

Report number: TR_1809. Christian-Albrechts-Universität

zu Kiel. January 2019.

DOI: 10.13140/RG.2.2.23096.39680.

