
Compact GPU-based Visualization Method for High-resolution Resulting
Data of Unstable Oil Displacement Simulation

Timokhin Petr1, Mikhaylyuk Mikhail1

webpismo@yahoo.de | mix@niisi.ras.ru
1Federal State Institution «Scientific Research Institute for System Analysis of the Russian Academy of Sciences»,

Moscow, Russia

In the paper the task of real-time synthesis of quality images of resulting data obtained in simulation of unstable oil displacement

from porous media is considered. A new, GPU-based method to construct and visualize on UltraHD screens a polygonal model of the

isosurface of the saturation of displacing liquid was proposed. The method is based on distributing and parallelizing of «marching

cubes» threads between GPU cores by means of programmable tessellation. As initial graphic primitives, quadrangular parametric

patches are used, the processing of which on the GPU is high-performance and has low video memory overhead. The proposed

method was implemented in visualization software and successfully tested. The proposed solution can be used in researches in oil and

gas industry as well as in virtual environment systems, virtual laboratories, scientific and educational applications, etc.

Keywords: visualization, real-time, oil displacement, isosurface, marching cubes, GPU, tessellation.

1. Introduction

With the increasing complexity of hydrocarbon extraction, a

high priority is acquired by digital technologies aimed at raising

oil recovery of oil-bearing reservoirs [3]. In particular,

technologies based on computer simulation and visualization of

the processes of unstable oil displacement from porous media

by water and polymer solutions are widely demanded [6]. First

part (simulation) is very important and concerns numerical

solution of the hydrodynamic task. Depending on the initial

conditions and the given accuracy, the computing of the task

can last for several days. This work focuses on the second

important part of the problem – the development of methods for

real-time 3D visualization (at least 25 frames per second) of

numerical results of oil displacement simulation, providing

UltraHD quality. Compared to analysis of numerical data,

researching 3D representations of numerical simulation results

allows developed computing models to be evaluated and

validated at a qualitatively higher level, and target scientific and

practical knowledges to be faster extracted.

One of the keys is the visualization of the isosurface of the

saturation of the displacing liquid – the surface of a constant

value of the 3D saturation field obtained at each step of the

simulation. There are two main approaches to visualize the

isosurface. One is to cast rays from a viewpoint through screen

pixels till the intersection with the isosurface [7]. Another is to

construct a polygonal model of the isosurface in the cells of a

3D grid (render grid) from typical sets of triangles («marching

cubes», MC) [4,5]. The former approach allows to obtain high-

quality images of isosurface, however, the rate of image

synthesis significantly falls on UltraHD screens, which opposes

the isosurface to be rendered in real-time. In the latter approach,

the quality of synthesized images is determined by the detail of

the render grid: the higher it is, the less angularity the isosurface

model is subjected to. This is clearly visible in UltraHD.

Therefore, to obtain high-quality images in real-time, effective

methods to construct polygonal isosurface model on detailed

render grid using distributed computing [1] and calculation

parallelization on multi-core GPU, are needed.

The paper proposes a new, distributed method which

performs computations of «marching cubes» in parallel GPU-

threads generated by means of programmable tessellation of

quadrangular graphic primitives [2]. The solution proposed is

implemented using C++, GLSL languages and OpenGL library.

2. Constructing a polygonal model of the isosurface

Consider the task of visualization of a polygonal model of

the surface of some constant value 𝑆∗ of the saturation field of

the displacing fluid. This field is defined by a render grid R of

size 𝑚 × 𝑛 × 𝑞 cells. Each of 8 vertices of the cell corresponds

to a certain value S of the saturation of the displacing fluid. We

will construct polygons only in those cells (cubes) of the grid R,

for all 8 vertices of which is not met the same condition: 𝑆 < 𝑆∗

or 𝑆 ≥ 𝑆∗. In other words, only the cells, that do not lie

completely inside or outside the isosurface, will be affected.

Consider some 𝑅𝑖,𝑗,𝑘 cell. Let us number the vertices of this

cell from 0 to 7, and the edges – from 0 to 11. We mark every

vertex of the cell, for which 𝑆 < 𝑆∗, with a bit value equal to 1,

otherwise – 0. Denote by K the configuration of 8 written one

after another bits. To every K value (from 0 to 255) a set of

triangles (polygons), which will be a part of the polygonal

model of the isosurface (containing in the render grid cell), is

uniquely corresponded. Every such set includes from 0 to 5

triangles. The vertices of the triangle lie on the edges of the cell,

so that one edge contains no more than one vertex. The set of

triangles is given by a sequence of 16 indices: 3 edge indices

per triangle and one index (-1) of the end of the sequence. All

the 256 sequences form a table T of sets of triangles (see [4]).

For the vertex specified by some edge index e in table T the

coordinates P are calculated as follows

 𝑃 = 𝑃𝐴 +
𝑆∗−𝑆(𝐴)

𝑆(𝐵)−𝑆(𝐴)
(𝑃𝐵 − 𝑃𝐴), (1)

where A, B are vertices of eth edge of the cell, 𝑃𝐴, 𝑃𝐵 are their

coordinates, and 𝑆(𝐴), 𝑆(𝐵) are values of saturation of

displacing liquid at vertices A and B.

Let us denote by 𝑊𝑖,𝑗,𝑘 a GPU-thread constructing a part of

the polygonal model of the isosurface in the 𝑅𝑖,𝑗,𝑘th cell

(hereinafter referred to as «marching cubes» thread). Then, the

entire polygonal model of the isosurface can be constructed by

creating and performing the «marching cubes» threads for all

the cells of the render grid.

3. Tessellation based «marching cubes»

In this paper, it is proposed to create «marching cubes»

threads by means of programmable tessellation (subdividing) of

patch-quads – quadrangular parametric graphic primitives

(hereinafter referred to as patches). Having programmed the

graphics pipeline of the GPU in a certain way, one patch can be

subdivided into a regular grid of size up to 𝐷 × 𝐷 vertices. Here

𝐷 = 𝐿𝑚𝑎𝑥 + 1 and 𝐿𝑚𝑎𝑥 is the maximum tessellation level – the

largest number of segments, the patch side can be subdivided

into (at least 64 in OpenGL 4.0). According to the pipeline

architecture each vertex is processed in a separate graphic

thread which we program to construct the corresponding part of

the polygonal isosurface model. The main advantage of the

approach proposed is that the vertices (threads) are generated

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Fig. 2. Main visualization pipeline.

Patches

MC-threads

Isosurface image

Polygonal isosurface

model

Scalar field values

(3D texture)

Index table of MC-

triangles (2D texture)

tessellation shaders

geometry shader

fragment shader

directly in GPU, preserving video memory resource and without

leaving graphics pipeline, in contrast to CUDA-based solutions.

To obtain 𝑚 × 𝑛 × 𝑞 «marching cubes» threads, a 3D array

of patches, consisting of 𝑚𝑝 = ⌈𝑚 𝐷⁄ ⌉ rows, 𝑛𝑝 = ⌈𝑛 𝐷⁄ ⌉

columns and 𝑞𝑝 = 𝑞 slices, is created (see Figure 1). Given

array is sent to the graphics pipeline every visualization frame,

where patches are distributed between the GPU cores and

processed by means of shader programs developed. These are

tessellation control shader, tessellation evaluation shader,

geometry and fragment shaders.

Tessellation control shader (TC). Here the computation of

two sets of parameters is executed.

The first set includes parameters specifying the width and

the height of 2D grid of vertices (a group of «marching cubes»

threads). The width and the height of thread group are

determined by tessellation levels 𝑙𝑤 and 𝑙ℎ of the patch, which

are calculated as follows

 𝑙𝑤 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝐿𝑚𝑎𝑥, 𝑛 − 𝐷𝑗𝑝 − 1), 1),

 𝑙ℎ = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝐿𝑚𝑎𝑥, 𝑚 − 𝐷𝑖𝑝 − 1), 1).

The second set includes three indices (𝑖𝑝, 𝑗𝑝, 𝑘𝑝) of the row,

column and slice of the patch in 3D array, required further for

setting correspondence of created threads to the cells of the

render grid. The calculation of the indices (𝑖𝑝, 𝑗𝑝, 𝑘𝑝) is based

on built-in variable of TC-shader, called 𝑔𝑙_𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝐼𝐷

which is the running number 𝑔 ∈ [0, 𝑚𝑝𝑛𝑝𝑞𝑝 − 1] of passing

patch, and is performed as follows

 𝑘𝑝 = ⌊
𝑔

𝑁
⌋, 𝑖𝑝 = ⌊

𝑔−𝑁𝑘𝑝

𝑀
⌋, 𝑗𝑝 = 𝑔 − 𝑁𝑘𝑝 − 𝑀𝑖𝑝,

where 𝑁 = 𝑚𝑝𝑛𝑝 and 𝑀 = 𝑁𝑞𝑝.

Tessellation evaluation shader (TE). This shader performs

processing of every vertex, obtained as a result of patch

tessellation, in a parallel thread, and sets the correspondence of

the vertex (thread) to a render grid cell. The latter is

implemented by adding to the vertex the attributes (𝑖𝑐 , 𝑗𝑐 , 𝑘𝑐) –

indices of the row, column and slice of the corresponding cell in

render grid, which are calculated as follows

 𝑖𝑐 = 𝐷𝑖𝑝 + 𝑖, 𝑗𝑐 = 𝐷𝑗𝑝 + 𝑗, 𝑘 = 𝑘𝑝,

where 𝑖 and 𝑗 are indices of the row and column of the vertex in

2D grid of vertices derived after tessellation the patch:

 𝑖 = ⌊𝑙ℎ𝑣 + 𝜀⌋, 𝑗 = ⌊𝑙𝑤𝑢 + 𝜀⌋,
where (𝑢, 𝑣) ∈ [0,1] are normalized real coordinates of the

vertex in 2D grid, provided by TE-shader, and 𝜀 is a small

constant which compensates machine error of real numbers

representation.

Geometry shader. This shader processes every (𝑖𝑐 , 𝑗𝑐 , 𝑘𝑐)th

vertex, which results either in replacing the vertex by a

constructed part of the polygonal model of the isosurface, or in

discarding the vertex without any geometry creation. The

processing starts with calculating of the number K of predefined

set of triangles (see Section 2):

 𝐾 = ∑ (2𝑝(𝑆(𝑉𝑝) < 𝑆∗))7
𝑝=0 ,

where p is running number of a vertex in the (𝑖𝑐 , 𝑗𝑐 , 𝑘𝑐)𝑡ℎ cell

of render grid, and 𝑆(𝑉𝑝) is the value of saturation of displacing

liquid at vertex 𝑉𝑝 of the cell. If 𝐾 = 0 or 𝐾 = 255 (the cell

completely lies inside or outside the isosurface), then any

triangles are not created in the cell (geometry shader simply

exits). Otherwise, according to the table 𝑇 (see Section 2), the

set of triangles, corresponding to 𝐾, is determined. Positions of

vertices of these triangles are calculated using Eq. (1), and then

triangles are emitted (see [2] for more detail). Note, that before

starting the visualization, the saturation field of the displacing

fluid is loaded into video memory as floating-point 3D-texture,

and the table 𝑇 – as an integer 2D-texture.

The triangles produced by the geometry shader are

rasterized (fixed function of the pipeline), resulting into pixels

(fragments) forming the image of the isosurface model. Pixel

colors are calculated in parallel, independently of each other by

means of developed fragment shader based on the Phong

illumination model [2] with directional light source. Figure 2

shows general scheme of the main visualization pipeline,

representing the whole workflow from simulated data till screen

image.

4. Results

Based on the method proposed, a software to visualize

results of simulation of unstable oil displacement from porous

qp

Fig. 1. Generating «marching cubes» threads.

np

mp

D

D

patches

fictive vertices

(threads)

q

n

m

media was created. Using the developed solution, a research of

about 70 steps of simulation of displacing oil by water on a

calculation grid of 1003 points was carried out. Figure 3 shows

the change of the isosurface of water saturation, corresponding

to the moment of breakthrough of displacement front. On the

figure one can see the characteristic tongues of the displacing

liquid (called «fingers»). The polygonal model of the isosurface

was constructed and visualized at screen resolution of

3840x2160 pixels using GeForce GTX 1080 Ti graphics card,

the average visualization rate was about 100 frames per second.

5. Conclusions

The paper proposes a new, distributed method to construct

and visualize on the GPU a polygonal model of the isosurface,

which provides real-time synthesis of quality images of the

isosurface on UltraHD screens. The proposed solution is based

on creation and execution of «marching cubes» threads on the

GPU using the developed set of tessellation, geometry and

fragment shaders. The novelty of the work consists in

distribution and parallelization of the «marching cubes» threads

between GPU cores by means of programmable tessellation of

quadrangular parametric graphic primitives – patches. Their

processing is high-performance due to hardware support at the

GPU architecture level and has low video memory overhead.

The proposed method was implemented in visualization

software, and it was tested on data obtained in simulation of

unstable oil displacement by water. Approbation of the software

has confirmed that the methods and algorithms created meet the

requirements for visualization of the results of simulation of

unstable oil displacement. The developed solution can be used

in researches in oil&gas industry, as well to build virtual

environment systems, virtual laboratories, scientific

visualization systems, etc.

6. Acknowledgements

This research was supported by the Russian Foundation for

Basic Research (project No. 16-29-15099).

7. References

[1] Akayev A.A, Kuzin A.K., Orlov S.G., Chetverushkin

B.N., Shabrov N.N., Iakobovski M.V. Generation of Isosurface

on a Large Mesh. In Proceedings of the IASTED International

Conference on Automation, Control, and Information

Technology (ACIT 2010), pages 236–240. АСТA press, 2010.

[2] Bailey M., Cunningham S. Graphics Shaders: Theory and

Practice, Second Edition. CRC Press, 2011.

[3] Betelin V.B., Smirnov N.N. About the problem of import

independence in the oil and gas industry. Computational simulation

of active impacts on oil reservoirs. In Proceedings of the V

International Conference «Mathematics and information

technologies in the oil and gas complex», pages 8–45. SurGU, 2017.

[4] Bourke P. Polygonising a scalar field. URL: http://paul-

bourke.net/ geometry/polygonise/ (review date: 15.05.2019).

[5] Matsumura M., Anjo K. Accelerated isosurface

polygonization for dynamic volume data using programmable

graphics hardware. In Proceedings of SPIE-IS&T Electronic

Imaging, Visualization and Data Analysis, 5009:145-152, 2003.

[6] Mikhaylyuk M.V., Timokhin P.Yu., Maltsev A.V., Nikitin

V.F., Skryleva E.I., Tyurenkova V.V. Modeling and

visualization of process of oil displacement from porous

medium. Proceedings in Cybernetics International Journal,

3(23):35–41, 2016.

[7] Parker S., Shirley P., Livnat Y. and et. al. Interactive Ray

Tracing for Isosurface Rendering. In Proceedings of the IEEE

Visualization 98 (VIZ’98), pages 233-238, 1998.

Fig. 3. Developed visualizer of data obtained in simulation of unstable oil displacement from porous media.

