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Hardware acceleration of ray tracing is an active research field, but only with the release of Nvidia Turing 
architecture GPUs it became widely available. Nvidia RTX is a proprietary hardware ray tracing acceleration 
technology available in Vulkan and DirectX APIs as well as through Nvidia OptiX. Since the implementation 
details are unknown to the public, there are a lot of questions about what it actually does under the hood. To 
find answers to these questions, we implemented classic path tracing algorithm using RTX via both DirectX and 
Vulkan and conducted several experiments with it to investigate the inner workings of this technology. We tested 
actual hardware implementation of RTX technology on RTX2070 GPU and the software fallback in the driver on 
GTX1070 GPU. In this paper we present results of these experiments and speculate on the internal architecture of 
RTX.
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1. Introduction

Ray tracing is a cornerstone of photo-realistic
image synthesis. Since first papers on ray tracing 
[19], [5], computer graphics researchers developed a 
plethora of different techniques to somehow acceler-
ate the computations associated with ray tracing.

The hardware acceleration ray tracing had limited 
success out of research papers. Until the RTX tech-
nology by Nvidia was released in their Turing archi-
tecture GPUs. It was stated that Turing hardware 
contains special so-called «RT cores» which acceler-
ate ray tracing. In the official Turing architecture 
whitepaper [22] it is stated that RT core contains two 
units which perform bounding box and ray-triangle 
intersection tests. But since RTX is closed source, 
we don’t know for sure how exactly it is implemented 
and if this is all that is to ray tracing acceleration in 
Turing GPUs. In this paper, we present information on 
several experiments we did with an RTX GPU. We 
analyze the experiments’ results and speculate on pos-
sible techniques used in RTX hardware to accelerate 
ray tracing. But first of all, let’s review the research in 
ray tracing acceleration hardware to understand what 
techniques were already tried out in hardware imple-
mentations and how well did they perform.

1.1 Related work in ray tracing acceleration
hardware

First dedicated hardware solutions closely related to 
ray tracing were PCI cards for volume data visu-alization 
which implemented ray casting and Phong shading (such 
as [9, 12]). Even though these hard-ware traced only 
primary rays, it already implemented techniques to 
increase the efficiency of parallel tracing such as grouping 
rays to make use of memory access coherence [9]. 
Another notable product was SaarCOR architecture [13] 
and its updated version in an FPGA chip [14]. The 
SaarCOR chip implemented the whole

ray tracing algorithm - scene and camera data were 
uploaded from the host and the chip produced the ren-
dered image. Like the ray casting solutions, SaarCOR 
used packet tracing (in groups of 64 rays). The archi-
tecture was fully pipelined to further mitigate memory 
access latency - simultaneously traversing one group of 
rays, loading data for the next group and intersec-tion 
operation performed on another group of rays. An 
example of ray tracing hardware which was com-
mercially available is ART AR250/350 rendering pro-
cessor with a custom RISC processor core [4]. The 
solution was used to accelerate offline rendering and 
was packaged as x86 PC with 16, 36 or 48 render-
ing processors as PCI-X cards and gigabit networking 
system. Software side included RenderMan compli-
ant renderer and network communication interfaces 
and plugins for 3D applications (CATIA, 3ds Max, 
Maya). Details about the custom rendering processor to 
our knowledge were never published.

All works mentioned to this point concern fixed 
function hardware. One of the first solutions with 
programmable stages is RPU (ray processing unit)
[20]. The traversal and primitive intersection tasks 
are implemented in fixed function units. RPU sup-
ported custom shaders with features such as recur-
sive function calls, trace instruction to initiate tracing of 
an arbitrary ray, asynchronous load instruction to hide 
memory latency. RPU also featured geometry shaders, 
instancing support and shader tables to look up specific 
shader to execute for a particular geome-try object. 
As SaarCOR and ray casting solutions, RPU also uses 
packet ray-tracing which can result in performance 
drops in the case of incoherent rays. The TRaX 
architecture [16] implements a different solution - 
many identical cores consisting of simple thread 
processors. It can be viewed as general pur-pose 
architecture and is used in other papers to simu-late their 
hardware [7]. In the ray-tracing application TRaX 
accelerates single ray performance and features MIMD 
execution model as opposed to groups of 4 or
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more rays and SIMD model in previously mentioned 
architectures. The authors in [10] aimed to address 
problems with incoherent rays by using N-wide SIMD 
processing architecture with filtering of rays to find 
coherent groups. The filtering is applied at traver-sal, 
intersection and shading stages of the ray tracing 
algorithm.

In [1] authors simulate architecture close to that of 
Nvidia Fermi GPU. One of the key aspects of it 
(related to ray tracing) is work compaction. When a 
warp (group of 32 threads) has more than a half of rays 
terminated, it terminates and the non-terminated rays are 
copied to the next warp. This mechanism allows to 
mitigate the effect of incoherent rays and preserve the 
parallelism. Another suggestion in this work is related 
to stack memory layout for threads. Also [1] 
implements the idea of partitioning BVH into treelets 
(which approximately matches cache sizes) and group-ing 
rays according to treelets they intersect. Another 
architecture - STRaTA [7] is built on top of the TRaX 
[16] and implements modified treelet technique of [1] 
and streaming approach to processing rays associated 
with each treelet. STRaTA adds special small buffers to 
memory hierarchy to store rays.

In [15] authors focus on improvements related to 
memory access, in particular, completely avoiding 
random memory access during ray traversal. Their 
approach is based around presenting data needed for ray 
tracing in two streams - stream of geometry data split 
in segments and stream of rays collected as a queue 
per geometry segment they intersect. This al-lows for 
fetching geometry and rays from main mem-ory into 
caches before they are needed for traversal.

Work [6] in addition to MIMD execution model 
and treelets proposes using reduced precision BVH 
traversal which also allows for chip area and power 
savings. Another specific point of [6] is that au-
thors propose small solution which can be integrated 
into existing GPU architecture. There are also works 
focused on developing mobile ray tracing hardware 
(such as [8, 11]). These solutions usually have such 
common properties as MIMD execution model, hard-
ware traversal and intersection units. Raycore [11] has 
distinctive properties that separate it from other ar-
chitectures - it’s fully fixed function Whitted-style ray 
tracing [19], it uses kD-tree as acceleration structure 
and includes hardware unit for kD-tree construction.

Summary. Overall, quite a few different architec-
tures and hardware acceleration techniques for ray 
tracing were proposed over the years. Detailed re-
view and comparison can be found in [2]. Some of the 
mentioned architectures had been implemented in FP-
GAs. Production level hardware applications besides 
Nvidia RTX are represented by [4] and mobile GPUs by 
Imagination technologies [21]. However, both of 
those have no published details, [4] is discontinued 
and [21] is not yet available. Therefore, RTX is the 
first hardware ray tracing acceleration technology to

reach wide public. But since the implementation de-
tails are closed (like [4, 21]), it is unclear how exactly 
does it work and what acceleration techniques it uses. In 
this paper, we aim to understand the principles be-hind 
ray tracing acceleration in Nvidia RTX hardware by 
measuring the performance in several scenarios us-ing 
Vulkan and DirectX12 API.

2. Experimental analysis of Nvidia RTX

First let’s briefly review available information 
about inner workings of RTX. Access to RTX ray 
tracing functionality is available through Vulkan API, 
Microsoft DirectX 12 (DXR) and Nvidia OptiX API 
libraries [23]. We used both Vulkan and DirectX 12 
for our experiments.

2.1 Known details

In summary, for both graphics APIs the corre-
sponding extensions add functionality to create ray 
tracing pipeline with the corresponding new shader 
types, commands and objects for acceleration struc-
tures, and tools to associate shader groups with accel-
eration structures (i.e. shader binding table).

Acceleration structure is represented as two-level 
tree. Bottom level acceleration structure (BLAS) ob-
jects contain actual vertices and top level acceleration 
structure (TLAS) contains BLAS object instances i.e. 
transformation matrices. The building process is done on 
the GPU, acceleration structure is some form of BVH 
[17].

Ray tracing pipeline has five shader types - ray 
generation, miss, closest hit, any hit and intersection. 
Shader programs of first three types are mandatory 
and the last two are optional. All stages of ray tracing 
algorithm are programmable. There is built-in ray-
triangle intersection shader which is used by default. 
Official whitepaper [22] states that RT core has ray-
triangle intersection unit inside. In [18] authors show 
2-3.5 times improvement in performance of their algo-
rithm of point location in tetrahedral meshes when us-ing 
built-in triangle intersection unit on Turing hard-ware 
while Volta hardware (which has no RTX cores, so 
software fallback is used for RTX functionality) 
shows performance loss in the same scenario.

2.2 Experiments

To understand how RTX works under the hood we 
conducted several experiments. As a base for our 
investigations we implemented a basic path tracing 
algorithm [5] and compare it to Open Source imple-
mentation of path tracing in Hydra Renderer [24].

Implementation of a minimal path tracer using 
RTX in Vulkan or DirectX 12 would require devel-
oper to:
1. build acceleration structures using ray tracing extension

API;



2. create ray tracing pipeline containing at least ray
generation, closest hit and miss shader programs;

3. create shader table to bind shader programs to ac-
celeration structures;

4. create and execute command buffers on created
pipeline.

There are several design options even in the minimal
implementation using RTX which can potentially affect 
performance. For example, the shading and lighting 
code can be executed in a ray generation shader, in 
a single (closest) hit shader or in several hit shaders. 
We tested two different implementations according to 
best practices of RTX for Vulkan and DX12:

1. impl_1 (Vulkan): ray generation shader creating
ray(s) for each pixel in a cycle until the specified
tracing depth is reached;

2. impl_2 (DirectX): ray generation shader spawning
primary ray and closest hit shader taking care of
generating rays until specified depth is reached. To
measure performance in all our experiments we

used Nvidia Nsight Graphics software and 2 GPUs— 
GTX1070 and RTX2070. It is known that while 
RTX2070 has hardware acceleration for ray tracing, 
GTX1070 has software implementation of RTX. Using 
this setup we captured frames from our path tracing 
application and logged time spent by vkCmdTraceR-
aysNV (Vulkan) or DispatchRays (DirectX 12) func-
tion and «BVH4TraversalInstKernel» kernel in Hy-dra 
Renderer. In our first set of experiments we ran 
implemented path tracer on three scenes (Sponza, 
CrySponza, Hairballs) with different tracing depth. 
From measured time we calculated frames per second 
and approximate amount of rays traced per second as:

rays = width ∗ height ∗ spp ∗ fps (1)

width, height – rendering resolution, spp – samples per 
pixel, fps – frames per second.

scene primary secondary tertiary
Sponza, impl_1 807 437 806
Sponza, impl_2 928 777 694

Sponza, Hydra_SW 480 122 130
Crysponza, impl_1 806 419 388
Crysponza, impl_2 754 635 216

Crysponza, Hydra_SW 276 92 80
Hairballs, impl_1 275 223 256
Hairballs, impl_2 567 155 141

Hairballs, Hydra_SW 61 50 56

Table 1. Million rays traced per second (Mrays/s), 1 
sample per pixel, 1024 x 1024 resolution, RTX2070

Fig. 1. Time spent by ray tracing "draw call" per frame (1 
sample per pixel, 1024 x 1024 resolution) depending on 

rays traced per depth level. Depth = 3

Next, we modified impl_2 with tracing several rays at 
each depth level essentially transforming it into an 
implementation of branched (recursive) path tracing. As 
can be seen in fig. 1, the time increases consis-tently 
with the number of rays, even slower in some cases. 
For example, with 4 rays per depth level the total 
number of rays is 7 times higher than for 1 ray per 
depth level (21 against 3). And the performance drop is 
6 times for Sponza and 3.6 for Hairballs.

3. Results and discussion

Conclusion #1: Nvidia RTX is primarily aimed at
accelerating random access to memory during ray 
tracing. More specifically, traversing BVH tree with a 
sets of random rays. This conclusion stems from (fig 2, 
right), where we can see that hardware implemen-tation 
on the small scene (Sponza) wins only 2 times (477 vs 
1140) with «coherent» and «sorted» sets of primary 
rays. But breaks away 4-5 times for the same Sponza 
and incoherent rays (122 vs 561). Moreover, large 
scene (Hair Balls) shows same 4-5 times for both 
primary (58 vs 283) and secondary (50 vs 210) rays. 
The fact that acceleration is preserved on the scene 
where the bottleneck is the memory confirms our con-
clusion.

Conclusion #2: Nvidia RTX implements some ray-
grouping/ray-sorting. It’s done probably in 
combination with GPU work creation (see conclusion 
#4). This assumption is confirmed by the fact that on 
simple scenes (like Sponza) hardware implementa-tion 
doesn’t have significant performance drop when we 
move from primary to secondary rays (table 1, fig1). 
At the same time software implementation sees its 
performance degrade much faster. However, on the 
scene where ray grouping could not help (Hair balls), 
both hardware and software implementation don’t have 
significant performance difference between primary and 
secondary rays.



Fig. 2. Comparison on GTX1070 (left) and RTX2070 (right) (Open Source implementation vs Nvidia RTX). The left part 
of each image (green) shows performance for primary (coherent) rays, and the right part (red) for secondary (random) 

rays.

Sponza (66K tris) Hair Balls (224M tris)Cry Sponza (262K tris) 

Fig. 3. Test Scenes

Fig. 4. Supposed internal architecture of Nvidia RTX. According to the results of our experiments, the hardware 
implementation should be closely connected with the texture units, or it is part of texture unit. We believe the most 
interesting part is related to reordering of memory access and thus it should work in analogue to well known memory 

access reordering inside texture units. In this way, traversal unit itself could be small enough and probably implements 
reduced precision BVH traversal [6] (or some analogue) for better cache efficiency and reducing HW cost.



Conclusion #3: Despite the Nvidia attempt, 
placing the whole code in a single kernel («CPU 
style» or «uber kernel») is still inefficient for GPUs. 
We make such conclusion because of 2 main reasons. 
First, open source implementation with separate ker-nel 
in Hydra Renderer benefits almost 2 times over 
Nvidia RTX for pure software case (fig. 2, left). Sec-
ond, when comparing 2 slightly different implementa-
tions of RTX in Vulkan and DX12 we have found dra-
matic changes in performance depending on a slight 
change in the complexity of shaders in 
«impl_1» (more complex) vs «impl_2» (simpler), table 
1. This can be explained by occupancy drop
depending on code complexity and register pressure.

Conclusion #4: Nvidia RTX uses GPU work cre-ation 
for rays. This conclusion is confirmed by simple 
observation. When we generated random amount of 
rays (10 to 40), we got 2 times slower in comparison 
with 10 rays. In contrast to ray tracing, when we cal-
culated Perlin Noise with random noise function calls 
(10 to 40), we got exactly 4 times of what we should 
have without GPU work creation. Our experiment 
with recursive ray tracing (fig.1) also confirms GPU 
work creation presence since the time is proportional to 
the number of rays.

4. Final conclusion

Our main conclusion is that Nvidia RTX is some
sort of «general» technology, oriented to speeding up 
random memory access and irregular work distribu-
tion on GPUs. In this way we can expect in near fu-
ture different sets of algorithms (at least some spatial 
search algorithms) to be hardware accelerated.

We believe Nvidia puts a lot of efforts in their com-
piler and software support of GPU work creation. On 
the example of this technology we can see, that «the 
golden age of software» has ended and the «the golden 
age of compilers and HW/SW projects» has started.

Despite the overall complexity of Vulkan and 
DX12, such improvements make GPU implementation of 
complex rendering engine much simpler for devel-oper. 
On the other hand, this simplicity is achieved at the 
cost of tying the project to a fairly heavy tech-nology. 
We believe that efficient software implemen-tation of 
RTX will be complex and expensive due to GPU work 
creation and specific compiler that Nvidia puts inside 
RTX — even Nvidia’s software implemen-tation on 
GTX1070 essentially loses to simple and 
straightforward open source ray tracing implementa-tion 
in Hydra Renderer.
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