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The field of automatic image inpainting has progressed rapidly in recent years, but no one has yet proposed a standard
method of evaluating algorithms. This absence is due to the problem s challenging nature: image-inpainting algorithms
strive for realism in the resulting images, but realism is a subjective concept intrinsic to human perception. Existing objective
image-quality metrics provide a poor approximation of what humans consider more or less realistic.

To improve the situation and to better organize both prior and future research in this field, we conducted a subjective
comparison of nine state-of-the-art inpainting algorithms and propose objective quality metrics that exhibit high correlation

with the results of our comparison.
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1. Introduction

Image inpainting, or hole filling, is the task of filling
in missing parts of an image. Given an incomplete image
and a hole mask, an inpainting algorithm must generate the
missing parts so that the result looks realistic. Inpainting is
a widely researched topic. Many classical algorithms have
been proposed [5, 26], but over the past few years most re-
search has focused on using deep neural networks to solve
this problem [12, 16, 17, 19, 23, 31, 32].

Because of the many avenues of research in this field,
the need to evaluate algorithms emerges. The goal of an
inpainting algorithm is to make the final image as realis-
tic as possible, but image realism is a concept intrinsic to
humans. Therefore, the most accurate way to evaluate an
algorithm’s performance is a subjective experiment where
many participants compare the outcomes of different algo-
rithms and choose the one they consider the most realistic.

Unfortunately, conducting a subjective experiment in-
volves considerable time and resources, so many authors re-
sort to evaluating their proposed methods using traditional
objective image-similarity metrics such as PSNR, SSIM
and mean /5 loss relative to the ground-truth image. This
strategy, however, is inadequate. One reason is that eval-
uation by measuring similarity to the ground-truth image
assumes that only a single, best inpainting result exists—a
false assumption in most cases.

Thus, a perceptually motivated objective metric for
inpainting-quality assessment is desirable. The objective
metric should approximate the notion of image realism and
yield results similar to those of a subjective study when
comparing outputs from different algorithms.

We conducted a subjective evaluation of nine state-of-
the-art classical and deep-learning-based approaches to im-
age inpainting. Using the results, we examine different
methods of objective inpainting-quality evaluation, includ-
ing both full-reference methods (taking both the resulting
image and the ground-truth image as an input) and no-
reference methods (taking the resulting image as an input).

2. Related work

Little work has been done on objective image
inpainting-quality evaluation or on inpainting detection in
general. The somewhat related field of manipulated-image

detection has seen moderate research, including both classi-
cal and deep-learning-based approaches. This field focuses
on detecting altered image regions, usually involving a set
of common manipulations: copy-move (copying an image
fragment and pasting it elsewhere in the same image), splic-
ing (pasting a fragment from another image), fragment re-
moval (deleting an image fragment and then performing ei-
ther a copy-move or inpainting to fill in the missing area),
various effects such as Gaussian blur, and recompression.
Among these manipulations, the most interesting for this
work is fragment removal with inpainting.

The approaches to image-manipulation detection can
be divided into classical [13, 20], and deep-learning-based
approaches [2, 21, 34, 35]. These algorithms aim to locate
the manipulated image regions by outputting a mask or a set
of bounding boxes enclosing suspicious regions. Unfortu-
nately, they are not directly applicable to inpainting-quality
estimation because they have a different goal: whereas an
objective quality-estimation metric should strive to accu-
rately compare realistically inpainted images similar to the
originals, a forgery-detection algorithm should strive to ac-
curately tell one apart from the other.

3. Inpainting subjective evaluation

The gold standard for evaluating image-inpainting al-
gorithms is human perception, since each algorithm strives
to produce images that look the most realistic to hu-
mans. Thus, to obtain a baseline for creating an objective
inpainting-quality metric, we conducted a subjective evalu-
ation of multiple state-of-the-art algorithms, including both
classical and deep-learning-based ones. To assess the over-
all quality and applicability of the current approaches and
to see how they compare with manual photo editing, we
also asked professional photo editors to fill in missing re-
gions of the test photos.

3.1 Test data set

Since human photo editors were to perform inpainting,
our data set could not include publicly available images.
We therefore created our own private set of test images by
taking photographs of various outdoor scenes, which are
the most likely target for inpainting.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



Fig. 1. Images for the subjective inpainting comparison.
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Fig. 2. Subjective-comparison results across three images
inpainted by human artists.

Each test image was 512 x 512 pixels with a square
hole in the middle measuring 180 x 180 pixels. We chose a
square instead of a free-form shape because one algorithm
in our comparison [30] lacks the ability to fill in free-form
holes. The data set comprised 33 images in total. Fig. 1
shows examples.

3.2 Inpainting methods

We evaluated three classical [1, 5, 7] and six deep-
learning-based approaches [10, 16, 27, 29, 30, 32]. Ad-
ditionally, we hired three professional photo-restoration
and photo-retouching artists to manually inpaint three ran-
domly selected images from our test data set.

3.3 Test method

The subjective evaluation took place through the
http://subjectify.us platform. = Human observers were
shown pairs of images and asked to pick from each pair
the one they found most realistic. Each pair consisted of
two different inpainting results for the same picture (the
set also contained the original image). In total, 6945 valid
pairwise judgements were collected from 215 participants.

The judgements were then used to fit a Bradley-Terry
model [3]. The resulting subjective scores maximize like-
lihood given the pairwise judgements.

3.4 Results of the subjective comparison

Fig. 2 shows the results for the three images in-
painted by the human artists. The artists outperformed all

The black square in the center is the area to be inpainted.
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Fig. 3. Subjective-comparison results for 33 images
inpainted using automatic methods.
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Fig. 4. Comparison of inpainting results from Artist #1
and statistics of patch offsets [7] (preferred in the
subjective comparison).

automatic algorithms, and out of the deep-learning-based
methods, only generative image inpainting [32] outper-
formed the classical inpainting methods.

The individual results for each of these three images ap-
pear in Fig. 5. In only one case did an algorithm beat an
artist: statistics of patch offsets [7] scored higher than one
artist on the “Urban Flowers” photo. Fig. 4 shows the
respective results. Additionally, for the “Splashing Sea”
photo, two artists actually “outperformed” the original im-
age: their results turned out to be more realistic.

We additionally performed a subjective comparison of
various inpainting algorithms among the entire 33-image
test set, collecting 3969 valid pairwise judgements across
147 participants. The overall results appear in Fig. 3.
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Fig. 5. Results of the subjective study comparing images inpainted by human artists with images inpainted by
conventional and deep-learning-based methods.

They confirm our observations from the first comparison:
among the deep-learning-based approaches we evaluated,
generative image inpainting [32] seems to be the only one
that can outperform the classical methods.

4. Objective inpainting-quality estimation

Using the results we obtained from the subjective com-
parison, we evaluated several approaches to objective
inpainting-quality estimation. In particular, we used these
objective metrics to estimate the inpainting quality of the
images from our test set and then compared them with the
subjective results. For each of the 33 images, we applied
every tested metric to every inpainting result (as well as
to the ground-truth image) and computed the Pearson and
Spearman correlation coefficients with the subjective re-
sult. The final value was an average of the correlations
over all 33 test images.

4.1 Full-reference metrics

To construct a full-reference metric that encourages se-
mantic similarity rather than per-pixel similarity, as in [11],
we evaluated metrics that compute the difference between
the ground-truth and inpainted-image feature maps pro-
duced by an image-classification neural network. We se-
lected five of the most popular architectures: VGG [22]
(16- and 19-layer deep variants), ResNet-V1-50 [8], Incep-
tion-V3 [25], Inception-ResNet-V2 [24] and Xception [4].
We used the models pretrained on the ImageNet [6] data
set. The mean squared error between the feature maps was
the metric result.

We additionally included the structural-similarity
(SSIM) index [28] as a full-reference metric. SSIM is
widely used to compare image quality, but it falls short
when applied to inpainting-quality estimation.

4.2 No-reference metrics

We picked several popular image-classification neural-
network architectures and trained them to differentiate im-
ages without any inpainting from partially inpainted im-
ages. The architectures included VGG [22] (16- and 19-

layer deep), ResNet-V1-50 [8], ResNet-V2-50 [9], Incep-
tion-V3 [25], Inception-V4 [24] and PNASNet-Large [15].

For training, we used clean and inpainted images based
on the COCO [14] data set. To create the inpainted images,
we used five inpainting algorithms [5, 7, 10, 29, 32] in eight
total configurations.

The network architectures take a square image as an in-
put and output the score—a single number where 0 means
the image contains inpainted regions and 1 means the im-
age is “clean.” The loss function was mean squared error.
Some network architectures were additionally trained to
output the predicted class using one-hot encoding (similar
to binary classification); the loss function for this case was
softmax cross-entropy.

The network architectures were identical to the ones
used for image classification, with one difference: we al-
tered the number of outputs from the last fully connected
layer. This change allowed us to initialize the weights of all
previous layers from the models pretrained on ImageNet,
greatly improving the results compared with training from
random initialization.

For some experiments we tried using the RGB noise
features [34] and the spectral weight normalization [18].

In addition to the typical validation on part of the data
set, we also monitored correlation of network predictions
with the subjective scores collected in Section 3. We used
the networks to estimate the inpainting quality of the 33-
image test set, then computed correlations with subjective
results in the same way as the final comparison. The train-
ing of each network was stopped once the correlation of the
network predictions with the subjective scores peaked and
started to decrease (possibly because the networks were
overfitting to the inpainting results of the algorithms we
used to create the training data set).

4.3 Results

Fig. 6 shows the overall results. The no-reference
methods achieve slightly weaker correlation with the
subjective-evaluation responses than do the best full-
reference methods. But the results of most no-reference
methods are still considerably better than those of the
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Fig. 6. Mean Pearson and Spearman correlations between objective inpainting-quality metrics and subjective human
comparisons. The error bars show the standard deviations.

full-reference SSIM. The best correlation among the no-
reference methods came from the Inception-V4 model with

spectral weight normalization.

It is important to emphasize that we did not train the
networks to maximize correlation with human responses.
We trained them to distinguish “clean” images from in-
painted images, yet their output showed good correlation
with human responses. This confirms the observations
made in [33] that deep features are good for modelling hu-

man perception.

5. Conclusion

We have proposed a number of perceptually moti-
vated no-reference and full-reference objective metrics for
image-inpainting quality. We evaluated the metrics by cor-
relating them with human responses from a subjective com-

parison of state-of-the-art image-inpainting algorithms.

The results of the subjective comparison indicate that
although a deep-learning-based approach to image inpaint-
ing holds the lead, classical algorithms remain among the

best in the field.

We achieved good correlation with the subjective-
comparison results without specifically training our
proposed objective quality-evaluation metrics on the

subjective-comparison response data set.
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