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Deconvolution-based method for image analysis of cerebral blood perfusion computed tomography has been
suggested. This analysis is the important part of diagnostics of ischemic stroke. The method is based on total
generalized variation regularization algorithm. The algorithm was tested with generated synthetic data and clinical
data. Proposed algorithm was compared with singular value decomposition method using Tikhonov regularization
and with total variation based deconvolution method. It was shown that the suggested algorithm gives better results
than these methods. The proposed algorithm combines both deconvolution and denoising processes, so results are
more noisy resistant. It can allow to use lower radiation dose.
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1. Introduction

Cerebral perfusion computer tomography is an im-
portant method for ischemic stroke diagnostics. This
test can allow to localize the area of brain damaged
by stroke. It is very important for urgent surgery.
Usually this information is obtained using method
based on the iodinated contrast agent injection and
CT scans of its concentration [1]. Example of such
CT scan is shown in Fig. 1.

The basic characteristics of cerebral blood dynam-
ics are cerebral blood flow (CBF), cerebral blood vol-
ume (CBV) and mean transit time (MTT), calculating
at each point of brain.

There are nondeconvolution-based methods of cal-
culation of these characteristics: moment method and
method of maximum slope [2, 3].

Better results can be obtained using
deconvolution-based methods. Total variation based
deconvolution method was suggested in [4, 5]. Nev-
ertheless total variation approach leads to some ar-
tifacts, because it tends to make solution piece-wise
constant. In this paper we suggest a deconvolution
approach using total generalized variation regulariza-
tion. In this case solution has not piece-wise constant
artifacts.

Quality of CT scans depends on the radiation dose:
the higher the radiation, the higher the image qual-
ity. Thus, the noisy resistant method can allow to use
lower radiation dose.

One of the approaches to reducing the noise im-
pact is the denoising of perfusion scans before de-
convolution or perfusion maps after deconvolution [6].
The method suggested in our paper includes denoising
stage inside the deconvolution procedure. It decreases
the number of method parameters and make the re-
sults more stable.

Fig. 1. An example of CT scan at one point in time.

2. Theoretical model

We consider some area of brain, where function
ctissue(t, x, y) is defined. This function is the con-
centration of contrast agent obtained from intensity
of CT scans at point (x, y). Concentration in artery
point is considered as an artery input function (AIF).
We denote it by cartery(t).

These functions are connected by the relation given
by the convolution equation [2, 3]:
ctissue(t, x, y) = (cartery ∗ k)(t)

=

∫ +∞

−∞
cartery(ξ)k(t− ξ, x, y) dξ,

(1)

where k(t, x, y) is a residual function at point (x, y).
Characteristics CBF, CBV and MTT at point

(x, y) can be represented via residual function k(t)
[3]:

CBF =
1

ρtissue
max k(t),

CBV =
1

ρtissue

∫ ∞

0

k(τ) dτ,

MTT =
1

max k(t)

∫ ∞

0

k(τ) dτ,

(2)

where ρtissue is a constant density of tissue.
We consider all functions on finite uniform grid, so

equation (1) turns to linear system:
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Ak = c, (3)

where:

A = ∆t


cartery(t1) 0 . . . 0
cartery(t2) cartery(t1) . . . 0

...
... . . . ...

cartery(tT ) cartery(tT−1) . . . cartery(t1)

 .

There t1, t2, . . . , tT are the nodes of the uniform grid
with step ∆t.

3. Deconvolution problem

Solution of the deconvolution problem for equa-
tion (3) is an ill-posed problem, and matrix A is ill-
conditioned. If we solve system (3) directly, solution k
will be unstable. Small noise in input data can com-
pletely change solution and the solution can not be
used for medical diagnosis.

An example of function k(t) obtained without reg-
ularization procedure for system (3) is shown in Fig.
2–3. The unstability is so large that we can not find
any real information on the solution.
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Fig. 2. k(t). Range is limited to interval [−10, 10], so
bigger oscillations are seen as vertical strips.
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Fig. 3. |k(t)| on a logarithmic scale.

There are different methods to regularize the prob-
lem. In this paper we consider method of total gen-
eralized variation and compare it with some state-of-
the-art methods.

3.1 Singular value decomposition (SVD)
We represent matrix A as a product of three ma-

trices [7]:
A = UΣVT, (4)

where U and V are orthogonal matrices, and
Σ = diag [σ1, σ2, . . . , σr]

is a diagonal matrix composed of the singular values
of matrix A, r = rang A.

This representation is called singular value decom-
position (SVD) of matrix A.

Using SVD, we can write the solution of (3) in the
form:

kls = VΣ−1 UT c, (5)
where Σ−1 = diag [σ−1

1 , σ−1
2 , . . . , σ−1

r ].
It is the solution of following minimization prob-

lem:
kls = arg min

k∈RT

(||Ak − c||22). (6)

Small singular values make a huge impact on the
values of k. It is the reason of ill-conditioning of ma-
trix A. These values can be suppressed using smooth-
ing factor λ:

σ
(tikh)
i, λ =

σi

σ2
i + λ2

. (7)

Using of matrix
Σ−1

λ = diag [σ
(tikh)
1, λ , σ

(tikh)
2, λ , . . . , σ

(tikh)
r, λ ]

instead of Σ−1 in (6), we get another method called
Tikhonov regularization. Here λ is a regularization
parameter. Vector k(tikh)

λ obtained by this method is
the solution of another minimization problem:

k(tikh)
λ = arg min

k∈RT

(
||Ak − c||22 + λ2||k||22

)
. (8)

3.2 Total variation (TV)
Let consider matrices composed by values of k and

c in all considering points of space:
K = [k1,k2, . . . ,kN] , C = [c1, c2, . . . , cN] .

Generally, regularization method in this paper can
be written as a minimization problem of functional:

J(K) = F (K,C) +R(K, λ), (9)
where F (K,C) is the data fidelity functional, R(K, λ)
is regularization term, and λ is a regularization pa-
rameter.

The most common used data fidelity functional is
the Frobenius norm of the residual:

F (K,C) = ||AK − C||22. (10)
In total variation method we use following regular-

ization functional [4, 5]:
R(K, λ) = ||K||λTV =

∑
i, j, t

λ1 |K̃i+1,j,t − K̃i,j,t|

+
∑
i, j, t

λ1 |K̃i,j+1,t − K̃i,j,t|

+
∑
i, j, t

λ2 |K̃i,j,t+1 − K̃i,j,t|

(11)



where K̃ ∈ RN1×N2×T is the reshaped matrix K,
λ = (λ1, λ2) is a regularization parameter.

We can use different weights for spatial and tem-
poral derivatives.

Total variation approach may lead to some arti-
facts, because it makes solution a piece-wise constant.

3.3 Total generalized variation (TGV)
Total generalized variation uses also the second or-

der derivative. In this work we use following form of
TGV stabilizer [8]:

TGV 2
λ (z) = λ1||∇z||1 + λ2||∇(∇z)||1. (12)

Approximation on regular grid for one-dimensional
case can be written as

TGV 2
λ (z) =λ1

∑
i

|zi+1 − zi|

+λ2

∑
i

|zi+1 − 2 zi + zi−1|,
(13)

where z = (z1, z2, . . . , zT ) is the grid function.
Finally, the regularization functional has the form:
R(K, λ) =

∑
i, j, t

λ1 |K̃i+1,j,t − K̃i,j,t|

+
∑
i, j, t

λ2 |K̃i+1,j,t − 2 K̃i,j,t + K̃i−1,j,t|

+
∑
i, j, t

λ1 |K̃i,j+1,t − K̃i,j,t|

+
∑
i, j, t

λ2 |K̃i,j+1,t − 2 K̃i,j,t + K̃i,j−1,t|

+
∑
i, j, t

λ3 |K̃i,j,t+1 − K̃i,j,t|

+
∑
i, j, t

λ4 |K̃i,j,t+1 − 2 K̃i,j,t + K̃i,j,t−1|.

(14)

where λ = (λ1, λ2, λ3, λ4) is a regularization parame-
ter.

4. Optimization algorithm

We use Nesterov accelerated gradient descent [9]
for functional minimization (9):

z0 = 0,

y0 = 0,

zk+1 = yk − ϵ · ∇F (yk),

yk+1 = zk + βk(zk+1 − zk),

(15)

where βk = 1− 3 / (k+1), and ϵ is the learning rate.
In this paper we used ϵ = 10−8.

5. Method testing

Clinical perfusion data does not have ground truth
values of residue function k(t) and perfusion parame-
ters. Therefore, synthetic data was generated. As a
base for generation we take perfusion maps for phan-
tom [10]. Then we generate function k(t) = C ·e−(at)2 .

To evaluate the stability of the method, we add a
white additive gaussian noise to the synthetic data.

Residue function k(t) — the result of applying of
described methods — is shown in Fig. 4.

We do not have ground truth values for clinical
data, but we can compare methods in Fig. 4. We
can see that residue function k(t) with TGV does not
tends to be a piece-wise constant as it is with TV
method.

The obtained mean transit time (MTT) map for
synthetic data by different method is given in Fig. 5.
MTT map is most informative for diagnosis purposes.
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Fig. 4. k(t) for a brain tissue point.

[10] Digital brain perfusion phantom. —
https://www5.cs.fau.de/research/data/digital-
brain-perfusion-phantom/.
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Fig. 5. MTT results for synthetic data by different methods.


