
Automatic Choice of Denoising Parameter in PeronaMalik Model
A.V. Nasonov1, N.V. Mamaev1, O.S. Volodina1, A.S. Krylov1

nasonov@cs.msu.ru | mamaev.nikolay93@mail.ru | olya.volodina@gmail.com | kryl@cs.msu.ru
1Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University
Moscow, Russia

In this work, we propose a no-reference method for automatic choice of the parameters of Perona-Malik image
diffusion algorithm for the problem of image denoising. The idea of the approach it to analyze and quantify the
presence of structures in the difference image between the noisy image and the processed image as the mutual
information value. We apply the proposed method to photographic images and to retinal images with modeled
Gaussian noise with different parameters and analyze the effects of no-reference parameter choice compared to the
optimal results. The proposed algorithm shows the effectiveness of no-reference parameter choice for the problem
of image denoising.
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1. Introduction

One of the main challenges in image processing is
denoising, as images are often corrupted by noise dur-
ing acquisition, transmission or storage. The goal is to
restore the original image by removing all noise while
preserving the contents. Image denoising is usually
needed as a preparation step in other image process-
ing methods. There has been a great research effort
in that field, yet the problem remains unsolved. In
this paper, we will use non-linear diffusion method
proposed in [1] by Perona and Malik, which repre-
sents a filtered image as a solution of nonlinear diffu-
sion equation with the original image as initial state
and homogeneous Neumann boundary conditions. By
choosing the diffusion parameter, one can manage to
clean flat areas and preserve edges. Non-linear diffu-
sion is an iterative process so there is a problem of
stop mechanism.

Most algorithms depend on noise level and thus
must be controlled by parameters entered by a user
or estimated automatically. A common approach for
automatic choice of the parameters is to estimate the
noise level and then choose the parameters according
to this noise level [2].

A less common approach is to analyze the preser-
vation of image contents after image restoration and
to pose the stopping criterion of anisotropic diffu-
sion. For example, the work [3] analyzes the edge
characteristics, the work [4] calculates image statis-
tics for speckle noise reduction. In [5], a analysis of
the contents in the difference image between the origi-
nal noisy image and the processed image is performed.
Its idea comes from an assumption, that in the ideal
case the difference image must contain just random
values without any structures from the original image.
If there are structures from the original noisy image,
then we have wiped out the important information as
well as the noise.

In this work, we investigate the automatic choice
of the parameters for Perona-Malik image diffusion for
Gaussian noise for photographic and retinal images.

2. PeronaMalik image diffusion

One of the methods for image denoising is based
on non-linear diffusion that considers the cleaned im-
age as the solution of the heat conduction. The dif-
fusion coefficient is chosen to reduce the diffusivity
in locations, which have more likelihood to be edges.
Such methods allow to preserve edges while denoising
due to the right choice of coefficient. Koenderink [6]
and Hummel [7] pointed out that an imaged convolved
with Gaussian kernel can be viewed as the solution of
the heat conduction equation with original image as
initial condition.

∂u

∂t
= div(c∇u), (x, t) ∈ Ω× [0, T ],

u(x, 0) = l0, x ∈ Ω,

∂u

∂n⃗
= 0, (x, t) ∈ ∂Ω× [0, T ],

where l0 is the input image defined in spatial domain
Ω, c is the diffusion coefficient, u(x, T ) is the result of
heat distribution at moment T .

In linear diffusion, the coefficient c is considered
to be constant and independent of the image. In non-
linear diffusion, the coefficient c is a function of image
gradient magnitude c = c(|∇u|), which controls the
blurring effect. Setting c to 1 in interior of each re-
gion and 0 at the boundaries will encourage smoothing
within a region and stop it on the edge, so that the
boundaries remain sharp. In [1] Perona and Malik
proposed two functions as edge-estimator:

c1(s) = exp
(
−
( s

K

)2
)

(1)

and
c2(s) =

1

1 +
( s

K

)2 , (2)

where K is the parameter of the method.
The diffusion equation can be solved numerically

by simple step algorithm:
un+1 = un + tn · c(|∇u|)∆u,

u0 = u(x, 0) = I0,∑
n

tn = T.
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In our work, we use the model (2).

3. Target images

We have analyzed the automatic choice of the pa-
rameters for the Perona-Malik image diffusion algo-
rithm for images of the following two classes:

• Photographic images from TID database [8];

• Retinal images from DRIVE database [9].

An example of those images is shown in Fig. 1.
In order to model noisy images, we have added

white Gaussian noise with different levels σ in [1, 32]
range to the reference images.

TID database [8] DRIVE database [9].

Fig. 1. An example of reference images used for the 
analysis in the paper.

4. Fullreference parameter analysis

For each noisy image, we have obtained a pair
of (K,T ) parameters that maximizes PSNR and
SSIM [10] metric values. We have found that for each
image there is a set of (K,T ) values producing the
results that are almost indistinguishable from the op-
timal result. The set is banana-shaped and lies per-
pendicular to the line passing though the zero point.
Fig. 2 shows an example of optimal (K,T ) values for
one of the images for different noise levels.

Noise = 3 Noise = 8

Fig. 2. A visualization of optimal (K, T ) parameters 
for an image with different noise levels in terms of 
PSNR. The horizontal axis represents K value in 
logarithmic scale. The vertical axis represents T 

value. Top-left corner is (0, 0) point. White regions 
corresponds to (K, T ) values that produce images 

with PSNR values close to the optimal value. Black 
regions correspond to PSNR values equal or less than 

PSNR for the unprocessed image.

We have also noticed that for each noise level the
ratio K/T can be fixed, and the parameter optimiza-
tion becomes one-dimensional, but for different noise
level the optimal ratio K/T set is different.

In order to go from two-dimensional to one-
dimensional parameter optimization for any noise
level, we have analyzed the behavior of optimal (K,T )
values and have found out that a set of optimal points
(logK,

√
T ) lies along a line. Therefore, we introduce

single-argument parameterization for (K,T ) values:
K = q1q

p
2 ,

T = p2,
(3)

where the coefficients q1 and q2 are chosen experimen-
tally by optimizing the full-reference metrics values.

For both TID and DRIVE images, we have fixed
q1 = 0.1 and optimized q2 value. The ranges of op-
timal values for TID images and for DRIVE images
are different, but they intersects. We have chosen
q2 = 4600 from the intersection.

5. Noreference parameter choice

We use the algorithm [5] for non-reference parame-
ter choice. The algorithm is based on the assumption
that the difference between input noisy and denoised
images should not have features belonging to original
image. In order to detect the presence of these fea-
tures, the algorithm analyses the eigenvalues of Hes-
sian matrix for scale and direction evaluation of ridges
and edges. The outcome of the algorithm is value µ
— the mutual information that can be expressed as
the structure-to-noise ratio for the difference image.
The lower the value µ is, the less details are corrupted
compared to noise removal.

We use the following scenario: an image denoising
algorithm is executed with different parameters, then
the mutual information µ value is calculated between
the input image and each denoising result, and the
image that minimizes the mutual information is cho-
sen as the optimal result. In practice, there can be
several local minima, and a special analysis should be
performed in order to choose the optimal result.

After replacing the two-parameter model with the
single-parameter model (3), we find the optimal p
value using both full-reference and no-reference ap-
proach based on calculating the mutual information
coefficient.

It has been found that mutual information corre-
lates well with PSNR and SSIM values for noise level
σ > 2. An example is shown in Fig. 3. A argument
where PSNR and/or SSIM reaches its maximum is
close to a local minimum of µ(p) function. In the case
of several local minima points, we find the one that
maximizes the drop:

popt = argp max
p′<p

µ(p′)− µ(p). (4)

In the case of very low noise level (σ ≤ 2), the
method has limited application. Non-linear diffusion
improves the image very little in the case of low noise.



The difference image has low magnitude, so the mu-
tual information coefficient is low, and local minimum
point becomes unstable or even disappears.
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Fig. 3. Examples of the dependence of PSNR, SSIM 
and mutual information on the parameter p 

corresponding to denoising strength. The PSNR and 
SSIM values are normalized into [0, 1] range.

6. Results

The numerical results for different scenarios of de-
noising parameter choice are presented in table 1. The 
results are averaged for all the images with noise level 
σ > 2.

Despite the fact that the proposed no-reference al-
gorithm has worse PSNR and SSIM values than the 
optimal ones, the difference between the results of the 
proposed algorithm and the optimal results is practi-
cally indistinguishable, and the effectiveness of image 
denoising is clearly visible.

The individual results are shown in Fig. 4, 5, 6.

7. Conclusion

The paper has shown that the parameters of the
Perona-Malik image denoising algorithm can be auto-
matically and effectively chosen by the algorithm that
analyzes the presence of structures from the input im-
age in the difference image.

The work was supported by Russian Science Foun-
dation grant 17-11-01279.

Fig. 4. Denoising by the proposed method. TID 
image I07, noise σ = 4.

Fig. 5. Denoising by the proposed method. TID 
image I08, noise σ = 32.



TID DRIVE
Optimization method PSNR SSIM PSNR SSIM
Input noisy images 30.76 0.8083 30.76 0.6174
Full-reference, double-parameter, by PSNR 34.25 0.9252 39.21 0.9293
Full-reference, double-parameter, by SSIM 34.10 0.9286 38.87 0.9338
Full-reference, single-parameter, by PSNR 34.22 0.9236 38.99 0.9224
Full-reference, single-parameter, by SSIM 34.03 0.9267 38.40 0.9297
No-reference, single-parameter, by MU (proposed) 33.77 0.9135 38.97 0.9218

Table 1. PSNR and SSIM results for different scenarios of denoising parameter choice for TID and DRIVE 
images.

Fig. 6. Denoising by the proposed method. 
DRIVE image I02, noise σ = 13.
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