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This research is devoted to the segmentation of heart and brain anatomical structures. In the study, we present a segmentation 

algorithm based on the square blocks (superpixels) propagation. The square blocks propagation algorithm checks two criteria. For the 

first criteria, the current intensity of the pixel is compared to the average intensity of the segmented region. For the second criterion, 

the intensity difference of the pixels lying on the superpixel sides is compared to the threshold. Once these criteria are successfully 

checked, the algorithm merges homogeneous superpixels into one region. Then the following superpixels are attached to the final 

superpixel set. The last step of the proposed method is the spline generation. The spline delineates the borders of the region of interest. 

The main parameter of the algorithm is the size of a square block. The cardiac MRI dataset of the University of York and the brain tumor 

dataset of Southern Medical University were used to estimate the segmentation accuracy and processing time. The highest Dice similarity 

coefficients obtained by the presented algorithm for the left ventricle and the brain tumor are 0.93±0.03 and 0.89±0.07 respectively. 

One of the most important features of the border detection step is its scalability. It allows implementing different one-dimensional 

methods for border detection.   
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1. Introduction 

Medical image segmentation is one of the most challenging 

tasks in the field of medical image processing. The segmentation 

and the subsequent analysis of medical images allow clinicians to 

predict disease, plan surgery procedures or assess the condition of 

internal organs. At the moment, many robust two- and three-

dimensional segmentation techniques have been proposed [19, 22, 

27]. The recent and the most popular articles on medical image 

segmentation are inextricably connected with machine learning and 

neural networks. Ozan Oktay used neural networks for cardiac 

image enhancement and segmentation in paper [17]. In paper [20] 

machine learning algorithms are used for brain tumor 

segmentation. Similar approaches have been used in many tasks of 

medical image analysis [14, 16]. However, algorithms based on 

machine learning often solve a narrow problem and require large 

training datasets. Despite the popularity of machine learning 

algorithms, common segmentation techniques remain relevant and 

keep improving [15, 25]. Semi-automatic image segmentation 

techniques are still popular because of their simplicity, a small 

number of parameters, and scalability.  

Today classical image segmentation techniques (active 

contours, region growing, watershed segmentation) are used in 

many semi-automatic image processing algorithms. It is worth 

noticing that analysis and processing of three-dimensional images 

are still difficult especially in the field of cardiology or brain 

imaging. Therefore, there are cases when clinicians use two-

dimensional planes for the analysis and segmentation. Moreover, 

the more popular machine learning algorithms become, the more 

data they require for training machine learning models. Thus, there 

is a need in an easy-to-use environment for data labeling. Two-

dimensional segmentation techniques are often used as such 

environments. 

In this study, we present a two-dimensional segmentation 

algorithm based on square blocks propagation (SBP). Dana Ballard 

and Rofl Adams’ algorithms [2, 4] inspired us to develop this 

method. We also used the approaches described in work [5]. The 

proposed algorithm is slightly similar to a classical region growing 

and based on the merging of the samples with similar properties of 

the region.  

2. Related works 

Most of the articles devoted to the region growing (RG) 

algorithms were presented more than a decade ago. Jun Tang 

proposed a method for color image segmentation based on a 

combination of the seeded region growing and watershed algorithm 

[26]. However, there were no modifications or improvements in the 

algorithms. The watershed segmentation is used as an initial step to 

find a seed region.  

Joung Park and Chulhee Lee used the seeded region growing 

algorithm for the skull stripping [18]. In that algorithm, a 

morphological mask was used for the automatic identification of 

the initial seed points of background and foreground. Other region-

based methods such as watershed segmentation and morphological 

segmentation are used in tasks of the skull stripping [8, 23]. 

However, many of these approaches have drawbacks, such as 

oversegmentation and noise sensitivity. 

Nor Isa in paper [13] proposed a modified seed-based region 

growing algorithm. Several important blocks of the algorithm such 

as setting the threshold value, determining the initial seed point, 

and the growing process were modified and automated. For 

instance, the automatic determination of the seed point is based on 

the k-means clustering algorithm. However, the approaches 

described in the paper have high computational complexity. This is 

explained by a number of preliminary calculations. For instance, 

the k-means clustering algorithm is working with an entire image. 

Jamshid Dehmeshki combined the region growing and the fuzzy 

connectivity region growing approaches in paper [11]. 

Paper [12] shows a modified region growing based on the 

merging superpixels. A superpixel is a group of pixels combined 

by a certain feature. The superpixel term was introduced by 

Xiaofeng Ren and Jitendra Malik in [21]. The superpixel concept 

is used in the presented study. However, the major difference of the 

proposed algorithm is that it does not check every pixel of the 

superpixel. In general, a number of segmentation algorithms based 

on superpixels were proposed before [9, 10, 24]. It should be noted 

that the clustering methods are used for a superpixel generation in 

most studies. In this approach, each pixel included in a superpixel 

should be processed separately, thus causing a relatively high level 

of complexity. The complexity of such algorithms is O(n2). A 

simple linear iterative clustering (SLIC) algorithm is used in studies 

[12], [20], and [9]. Initially, this method was presented in paper [1], 

where Radhakrishna Achanta developed a superpixel-based 

segmentation method using k-means clustering for a five-

dimensional feature space. The first three dimensions are the color 

space and the last two are the pixel coordinates. The SLIC 

algorithm is a modified k-means clustering algorithm which does 

not compare each pixel with other pixels in the image. Ovidiu 

Csillik in paper [10] demonstrated a method based on SLIC 

superpixels for a high-resolution segmentation. The paper presents 

a processing time of superpixels at different resolutions. This 

method processes 1347 × 1042 and 3701 × 3301 images for 2 and 

26 seconds respectively.  

As shown above, segmentation algorithms based on 

superpixels are quite popular. However, most of the considered 
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approaches have a high level of algorithmic complexity. In this 

regard, we propose a 2D semi-automatic segmentation algorithm 

based on a superpixel growing where superpixels have a floating 

size. The latter allowed us to achieve better algorithmic 

performance. 

3. Data and methods 

3.1 Data description 

In order to develop and validate the proposed algorithm, we used 

open-access datasets. The first dataset was provided by the 

University of York (York, United Kingdom) and contains 33 

subjects [3]. Each subject's sequence consists of 20 frames and 8-

15 slices (256x256 pixels) along the long axis, for a total of 7980 

images. Two clinicians manually segmented all the images of the 

dataset. The ground truth of the left ventricles' endocardial and 

epicardial was acquired. 

The second source of data is the brain tumor dataset. This 

dataset includes 3064 T1-weighted contrast-enhanced images. The 

dataset was acquired at Southern Medical University and contains 

data from 233 patients with three kinds of brain tumors: 

meningioma, glioma, and pituitary tumor (Guangzhou, China) [6, 

7]. The size of MRI images is 512*512 pixels. Examples of the 

heart and the brain tumor images are shown in Fig. 1. 

Both datasets were processed offline on the computer equipped 

with Intel Core i7-4820K 3.7GHz CPU and NVIDIA GeForce 960 

GT using MATLAB (MathWorks, Natick MA).  

  

(a) Heart MRI sample (b) Brain tumor MRI sample 

Fig. 1. Examples of source data 

3.2 Region growing algorithm 

Starting from a seed of the region of interest (ROI) the region 

growing algorithm performs a segmentation. The region is growing 

due to the connection of the neighboring pixels, which satisfy the 

criterion of homogeneity. There are two versions of the algorithm: 

a seeded version with a manual selection of the seed point and an 

unseeded version with a random seed point. A classical region 

growing algorithm is conceptually shown in Fig. 2. 

 

Fig. 2. The workflow of the region growing algorithm 

A criterion of merging neighboring pixels is presented below 

and also shown in [2]. 

𝑃(𝑥, 𝑟) = |𝑓(𝑥) −  𝜇𝑟| < 𝑇, (1) 

where f(x) is the intensity of the current pixel, 𝜇𝑟 is the arithmetic 

mean intensity of the region, T is the threshold level. The approach 

described above is a standard implementation of a region growing 

algorithm. 

3.3 Square blocks propagation 

There is no conceptual difference between the classical seeded 

region growing and the proposed algorithm. However, the SPB 

algorithm assumes a translation to the domain of superpixels. This 

allows reducing the complexity of the algorithm and increasing the 

processing speed. In the proposed algorithm a superpixel represents 

a square block comprising of the pixels. All pixels inside the block 

have a 4-connected neighborhood by default. The SPB algorithm 

checks two criteria, described in Section 3.6 in more detail, and 

merges superpixels into one region. Then points lying on 

superpixels borders are used for spline generation. The workflow 

of the proposed algorithm is shown below in Fig. 3. 

 

Fig. 3. The workflow of the square blocks propagation algorithm 

The main difference between the proposed algorithm and the 

methods reflected in papers [12, 28] is that the proposed algorithm 

does not analyze single pixels belonging to superpixels. For 

instance, the standard region growing algorithm processes all 100 

pixels of a 10x10 superpixel. In turn, the presented algorithm 

processes only 50 out of 100 pixels. Thus, the larger the initial 

square size is, the higher the algorithm speed is. The concept of the 

square propagation and the size reducing procedure is shown in Fig. 

4. 

  

(a) Propagation using initial 

size squares 

(b) Propagation using squares 

with the reduced size  

Fig. 4. Square propagation and square size reduction. Blue blocks 

show the first step of the square propagation with an initial 

superpixel size. Purple blocks demonstrate the second step of the 

square propagation and the square size reduction 

The proposed algorithm applies superpixel growing instead of 

pixels merging. This approach accelerates the segmentation 

process. Similar to the region growing algorithm, a merging 

process occurs as long as there is at least one group of pixels that 

could be included in the final set. The superpixel is included in the 

final superpixel set when the superpixel sides do not cross the 

border of the ROI (see Section 3.6). If there is at least one border 

crossing on the checked segments, then the square block is not 

included in the final superpixel set. 

The first square center is the starting point chosen manually. A 

square of a given size is placed around the first point. The diagonals 

and the sides of the square are checked for the border crossing. If 

the square does not cross the border of the ROI, it is placed in an 
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image. Otherwise, the algorithm can continue only if the size of the 

initial square block is reduced. 

3.4 Search for outer squares 

Superpixels are validated and attached to the final superpixel 

set as long as possible. If there are no squares with the given size 

which can be added to the studied region, the size of the square is 

halved and the propagation process continues. An example of the 

outer squares found by the algorithm is shown in Fig. 5. The green 

points indicate an intersection of the squares with the ROI. 

 

Fig. 5. Example of outer squares that cannot be added to the ROI 

(yellow squares) because of the intersection with the segmented 

area border. Green points demonstrate this intersection 

The square size reducing procedure can be repeated several 

times until the minimum size of the square is reached. The 

minimum square size is one of the parameters of the algorithm. At 

the final step of the algorithm, the superpixels with the smallest size 

are located close enough to the border of the segmented area but 

never cross it. An obligatory condition for completing this stage is 

the impossibility of further attaching the square blocks. 

3.5 Delineation and masking 

At this step, the algorithm bypasses the outer superpixels which 

have not been attached to the region. These squares form a contour 

in accordance with the mandatory condition described above in 

Section 3.4. The contour consisted of outer superpixels is bypassed 

clockwise. The intersection points are saved for each superpixel 

crossing the contour of the ROI, creating a list of nodal border 

points. The same procedure is performed to bypass the inner 

borders of the region if such exist. 

Having a list of nodal points, it is possible to construct a 

Hermite cubic spline describing the inner and outer contours of the 

segmented region (see Fig. 6). Thus, the result of the algorithm is a 

spline or a set of splines. 

Fig. 6 shows a conceptual scheme of spline generation. As 

shown, the blue line has an unusual shape for a cubic spline. The 

output segmentation mask obtained using spline generation is 

shown in Fig. 7.  

Among the entire set of image pixels L, the algorithm finds the 

set of intersection points P. Each intersection point represents a 

point where a square block sides or diagonals cross the border of a 

region. One of the ways to obtain a contour is to construct a 

regression of these points. However, we did not use a linear spline, 

as it gives a significant error in constructing the contour borders. 

We also refused to use B-splines because they do not pass through 

the extreme points. The latter is not acceptable since it significantly 

reduces the accuracy of segmentation.  

Thus, the result of the algorithm is the set of cubic splines 

describing the contours. Such an analytical presentation may be 

more preferable than representing a segmented area in the form of 

a mask. However, it is possible to switch from spline to mask using 

existing methods. 

 

 

Fig. 6. Hermite cubic spline (blue line) passing through the nodal 

points (green points) 

 

Fig. 7. Obtaining a segmentation mask. Cubic spline (blue) and 

segmentation mask (purple) represent the region of interest 

3.6 Border detection 

To detect the border of the ROI, the proposed algorithm applies 

two conditions. For the first condition, the intensity of the 

side/diagonal pixel is compared with the mean intensity of center 

pixels of already placed squares. The threshold parameter is a 

configurable parameter of the algorithm. 

∆𝐼 = |𝑝𝑖 −
∑ 𝑝𝑐𝑗

𝑘
𝑗=1

𝑘
| ≥ 𝑇, (2) 

where 𝑝𝑖 is the intensity of the current pixel, 𝑝𝑐𝑗
 is the intensity of 

the center pixel of a certain square, 𝑘 is the number of already 

placed squares, 𝑇 is the threshold level. 

For the second condition, the intensity difference of the pixels 

lying on the superpixel sides is compared with the threshold. The 

approximation is performed using the method of least squares at 5 

points. The coefficient, representing a slope of the straight line is 

calculated as follows: 

𝑡𝑎𝑛 (𝜑) = |
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑥𝑖
2 −𝑛

𝑖=1 (∑ 𝑥𝑖
𝑛
𝑖=1 )2

| ≥ 𝑠𝑙𝑜𝑝𝑒, (3) 

where x is the edge points varied in a certain range (in our case this 

range is from 1 to 5), y are intensity values, n are positions of the 

edge points. When constructing the vector x, it should be 

considered that the distance between pixels is the Euclidean. 

For the current pixel, the approximation is done using two 

pixels on the right and two on the left. If the pixels are in the corner 



of a superpixel, the additional pixels that slightly exceed the 

borders of the square block are taken. The slope module allows the 

algorithm to accurately detect the region borders and makes the 

algorithm resistant to noise. Border search is applied on the sides 

and diagonals of the square blocks using conditions described 

above. If there is at least one side/diagonal crossing of the region 

border, the square block is not included in the final set. Thus, the 

reliability of the algorithm rises.  

As shown in Fig. 8, each square block has six-line segments 

(AB, BC, CD, AD, AC, and BD). These lines consist of pixels. All 

that we need to do is to perform a one-dimensional segmentation 

for each line. This approach significantly reduces the execution 

time of the algorithm. Another advantage of the proposed solution 

is the possibility to apply any set of one-dimensional segmentation 

methods to a line segment. Therefore, any segmentation method 

can be implemented in the proposed algorithm as a plug-in for the 

additional verification of the border crossing. It is worth noticing 

that if at least one segment has crossed the border of the region, the 

algorithm does not process the rest of the line segments. The latter 

allows reducing the algorithm runtime and increasing the 

performance of the algorithm by 5 times in the extreme case. 

 

Fig. 8. Square block (red) crossing the ROI in three points (green) 

3.7 Size of square blocks 

The region growing algorithm often leaks through the holes in 

borders. Some modifications of the region growing [21] can help 

to avoid this effect, but these methods still have high computational 

complexity. The proposed algorithm eliminates this disadvantage 

due to the variability of the square blocks size. The minimum 

square size also has an influence on the contour details and its 

smoothness. The larger the side of the square is, the smoother and 

less detailed the contour is. As the square size decreases, the border 

becomes more detailed while the probability of negative leakage 

effect increases. 

The initial square size defines the propagation speed. It should 

also be noted that the initial square size depends on the segmented 

area and the image resolution. For initial square size K we used the 

method presented in paper [12], where parameter K is calculated as 

follows: 

𝐾 =
𝑁

𝑆𝐹
 (4) 

where N is a number of image pixels, and SF is the size of the 

smallest segmented object in the image.  

3.8 Algorithm complexity 

In the case of the region growing, at least N2 steps are required 

to process a block of N×N pixels. Consequently, the complexity of 

the region growing is O(n2). Each image pixel is processed 

separately by the region growing algorithm. For the proposed 

algorithm, a number of iterations for the block size of N×N pixels 

varies from 3×N to 5×N. However, there is an exceptional case for 

the first square where a number of iterations is equal to 6×N. In this 

regard, the asymptotic complexity of the SBP algorithm is O(n). As 

shown, the proposed approach moves from the pixel level to the 

level of the pixel groups and fragments. The latter allows 

remarkably reducing the execution time of the algorithm. 

4. Results 

In this section, we studied how the accuracy and processing 

time changed with respect to different sizes of the squares. The 

Dice Similarity Coefficient (DSC) was used as the main metric for 

the accuracy assessment. 

4.1 Left ventricle segmentation 

The left ventricle segmentation of the presented algorithm, 

region growing algorithm, and the ground truth (GT) manual 

segmentation is presented in Fig. 9. In the case of patient 2 and 

patient 3, region growing leaks out through the gaps in the borders 

of the ROI. This is because the region growing approach processes 

an image at the pixel domain. In turn, the SPB algorithm avoids the 

problem of the border gaps. 

Patient 1 

  

Patient 2 

  

Patient 3 

  

(a) Square blocks propagation 

algorithm (blue) vs manual 

segmentation (cyan) 

(b) Region growing algorithm 

(red) vs manual segmentation 

(cyan) 

Fig. 9. Segmentation of the left ventricle using the proposed SBP 

and RG algorithms in comparison with the ground truth manual 

segmentation 

To test the segmentation accuracy and processing time of the 

left ventricle, we used a dataset comprised of 156 slices. The left 

ventricle segmentation accuracy for different square sizes is shown 



in Fig. 10 and Table 1. Additionally, the total number of low-

accuracy cases when DSC is less than 0.5 is shown in Fig. 11. 

 

Fig. 10. Left ventricle segmentation accuracy of the proposed 

algorithm 

 

Table 1. DSC obtained on the left ventricle dataset for different 

algorithms. 

SBP 20-10-5 SBP 16-8-4 SBP 12-6-3 SBP 8-4-2 RG 

0.93±0.03 0.91±0.07 0.89±0.10 0.86±0.11 0.88±0.09 

 

As shown in Fig. 10 and Table 1, DSC values of SBP 8-4-2, 

SBP 12-6-3 and RG do not differ significantly. However, the DSC 

interquartile range of SPB with parameters 20-10-5 and 16-8-4 is 

significantly better than RG’s one. The average accuracy of the 

SPB algorithm has grown significantly due to the fact that 

superpixels do not leak through the border gaps. 

Better performance of the proposed algorithm is indirectly 

confirmed by a number of low-accuracy segmentation cases (see 

Fig. 11). A low-accuracy case is a leakage case or a case with the 

value of DSC less than 0.5. In 32% of the studied cases, RG leaks 

through the borders defects what confirms its unreliability. 

 

Fig. 11. Low-accuracy cases during heart segmentation 

4.2 Brain tumor segmentation 

The brain tumor segmentation of the presented algorithm, 

region growing algorithm, and the ground truth manual 

segmentation is presented in Fig. 12. As shown, the region growing 

algorithm has a problem related to the leakage through the border 

gaps. In this case, the bone tissue is mistakenly segmented for the 

three presented patients. Such properties of the image lead to low 

accuracy of the region growing. In turn, SPB allows configuring 

the size of superpixels to avoid oversegmentation and then 

segmenting the tumor successfully. 

Patient 1 

  

Patient 2 

  

Patient 3 

  

(a) Square blocks propagation 

algorithm (blue) vs manual 

segmentation (cyan) 

(b) Region growing algorithm 

(red) vs manual segmentation 

(cyan) 

Fig. 12. Segmentation of the brain tumor using the proposed SBP 

and RG algorithms in comparison with the ground truth manual 

segmentation 

To test the segmentation accuracy and processing time of the 

brain tumor, we used a dataset comprised of 300 slices. The brain 

tumor segmentation accuracy for different square sizes is shown in 

Fig. 13 and Table 2. Additionally, the total number of low-accuracy 

cases when DSC is less than 0.5 is shown in Fig. 14. 

 

Fig. 13. Brain tumor segmentation accuracy of the proposed 

algorithm 

1
4 6

13

50

0

10

20

30

40

50

60

L
ea

k
ag

e 
ca

se
s

SBP 20-10-5 SBP 16-8-4 SBP 12-6-3

SBP 8-4-2 RG



Table 2. DSC obtained on the brain tumor dataset for different 

algorithms. 

SBP 20-10-5 SBP 16-8-4 SBP 12-6-3 SBP 8-4-2 RG 

0.89±0.07 0.88±0.08 0.88±0.08 0.87±0.09 0.86±0.10 

 

In the case of the brain tumor segmentation, pseudo 

proportionality between the DSC and the size of the squares is 

observed. The latter means that the smaller the square size is, the 

less the DSC value is. It should be noted that the reason for these 

leaks is not the borders defects. In this case, the tumor has 

approximately the same level of intensity as external bone tissue.  

 

Fig. 14. Low-accuracy cases during brain tumor segmentation 

4.3 Execution time testing 

To compare the propagation speed of the region growing 

algorithm and the proposed algorithm, a synthetic test image with 

a white circle in the center and the black background was generated. 

This test image was created in different sizes. The dependence 

between processing time and image sizes for both algorithms is 

represented in Fig. 15 and Fig. 16. As seen, both algorithms have 

asymptotic complexity O(n2) but the region growing algorithm is 

much slower, and cannot be adapted for optimal speed. 

 

Fig. 15. The average execution time of the SBP algorithm for 

different sizes of images and square blocks 

5. Conclusion 

The proposed algorithm is devoted to the segmentation of 

images with high resolution or medical images with ROI border 

defects and low contrast. Additionally, this algorithm can be 

applied to data labeling. The most significant factor of the 

algorithm speed is the maximum square size and the sequence of 

sizes of the square blocks in common. Increasing the size of the 

largest square from the chosen sequence makes the image 

processing faster. On the other hand, the sizes should be chosen in 

the way that at least one square block is placed in the ROI.   

 

 

Fig. 16. The average execution time of the RG algorithm for 

different image and square block sizes 

The proposed algorithm has opportunities to improve execution 

time, robustness, and final accuracy. All squares are processed 

independently to each other, so the algorithm can be paralleled on 

GPU for minimizing execution time.  

An important feature of the algorithm is its scalability. It means 

that several different algorithms can be used for border detection at 

the same time. We used two criteria: one-dimensional region 

growing and intensity gradient check. As an additional method, 

machine learning or one-dimensional neural networks can be 

applied to the border detection. It should also be noted that the 

algorithm can be extended for three-dimensional imaging. 
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