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Remote sensing of the earth and monitoring of various phenomena have been and still remain an important task for solving various 

problems. One of them is the forest pathology dynamics determining. Assuming its dependence on various factors forest pathology can 

be either short-term or long-term. Sometimes it is necessary to analyze satellite images within a period of several years in order to 

determine the dynamics of forest pathology. So it is connected with some special aspects and makes such analysis in manual mode 

impossible. At the same time automated methods face the problem of identifying a series of suitable images even though they are not 

covered by clouds, shadows, turbulence and other distortions. Classical methods of nebulosity determination based either on neural 

network or decision functions do not always give an acceptable result, because the cloud coverage by itself can be either of cirrus intortus 

type or insignificant within the image, but in case of cloudiness it can be the reason for wrong analysis of the area under examination. 

The article proposes a new approach for the analysis and selection of images based on key point detectors connected neither with 

cloudiness determination nor distorted area identification, but with the extraction of suitable images eliminating those that by their 

characteristics are unfit for forest pathology determination. Experiments have shown that the accuracy of this approach is higher than of 

currently used method in GIS, which is based on cloud detector. 
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1. Introduction 

As provided for in the item 1 and 2, article 60.5 of the 

Forestry code of RF the state forest pathology monitoring is 

induced into the state ecological monitoring and represents a 

system of supervision by applying of both land, and remote 

methods in regard to sanitary state and forest pathologies 

(including testing, analysis and projected changes) [1].  

The procedure for exercising the state forest pathology 

monitoring is enacted into law by the order of Ministry of Natural 

Resources of RF of 5 April 2017 N 156 «On approval of the 

Procedure for state forest pathology monitoring» [2]. According 

to this the task of remote observations concerning sanitary state 

and forest pathology is to identify changes in the sanitary state of 

forest and find forest pathologies alongside with preallotment 

and determination of the forest range boundaries and areas 

having these changes. Besides it, according to [2] it is determined 

that remote observation of sanitary state of the forest and forest 

pathology should be carried out through the interpretation of 

space images and aerial photographs obtained owing to the use 

of aircraft and unmanned aerial vehicles. This factor makes it 

necessary to obtain a set of images that can identify forest 

pathologies and monitor their changes. 

Detection of forest pathologies by remote method is based on 

the fact that the stressed tree dries out in a vegetative way. Thus, 

we can say that the period of monitoring coincides with the 

period of vegetation in the area under observation. In the Central 

Federal District this period is approximately from 15 may to 15 

October (about 5 months per year). 

In this short period of time it is necessary to identify 

pathologies remotely and as quickly as possible, besides, it is 

important by using ground-based means to confirm them and to 

identify the causes. After that, if applicable, it’s essential to get 

tough with the prevention of pathologies enlargement. 

Vegetation dying off of the forest can occur due to various 

factors. Some of them can’t be fought against (for example, cases 

of insufficient moisture). However, there are some other factors 

destroying forest, such as diseases (root rot). This disease follows 

long while lasting for years (about a decade). One more cause of 

forest dying is plant pests. 

A striking example of needle-eating insects and leaf beetles 

is the Siberian silkworm (dendrolimus sibiricus), which is the 

most rampant in the forests of Siberia and the Far East. In these 

regions, millions of hectares of sound timber were lost because 

of the harmful activity of the insects. The time of gnawing of the 

tree crown spent by a silkworm depends on its population. For 

example, a population of one hundred species gnaw the needles 

of a tree within a period of about a day, if the population increases 

tenfold, the time is reduced to a few hours. 

In Bryansk region, the main needle-eating pests or leaf 

beetles are sawflies and timber beetles. The population of the 

timber beetle on one tree can be up to several tens of thousands. 

With so many species it is able to destroy the tree within a month. 

That’s why the European Union considers the beetle to be one of 

the most dangerous among secondary insects. 

Thus, it can be concluded that, depending on the type of pest 

destroying trees, the development cycle of pathology varies from 

several years to several weeks. For this very reason a constant 

forest monitoring is indispensable. 

Continuous monitoring of the forest implies examination of 

great number of satellite images taken for large areas. In this case 

taking into account the amount of data, manual image processing 

is neither suitable, nor effective, i.e. semi-automatic or automatic 

processing is required. However, the region of interest may be 

covered by clouds or other interference that make the dynamics 

of forest pathology erroneous. 

Popular systems that provide unclosed series of satellite 

imagery [5], also contain information regarding areas covered by 

clouds (cloud mask). However, as shown, for example, in [4] the 

cloud mask Level 1C of Sentinel-2 images often omits the 

presence of clouds (the average error is 37.4%). For the cases 

when satellite images contain either opaque clouds with a large 

transition zone (between the core of the cloud and the clean 

areas) or Cirrus clouds this error can be more than 50%. The 

same situation takes place when using other systems that provide 

satellite imagery (Landsat, Wordview, etc.). Therefore, various 

approaches and algorithms in the field of cloud detection are 

being actively developed. 

Most of modern methods of cloud zone detection in satellite 

images can be divided into three groups. The algorithms of the 

first group are based on calculations connected with certain 

circuit groups of multispectral images devoted to indices and 

characteristics and also decision functions applied to them [9, 10, 

14, 20]. They include the construction and analysis of 

histograms, threshold determination, as well as the analysis of 

deviations, etc. The second group includes algorithms of 

machine and deep machine learning based on artificial neural 
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networks, classification trees, Kohonen maps, etc. [7, 8, 16, 17, 

19, 21]. 

Algorithms of these two groups give quite good results when 

detecting clouds in certain classes of satellite images, but often 

responds fallacious in more complex cases, when in satellite 

images there are different types of clouds and snow of complex 

geometric configuration. Therefore, in real-life situations, the 

algorithms of the third group, combining both approaches and 

detecting not only clouds, but also snow and shadow [9, 20] are 

applied. At the same time it is possible to achieve the recognition 

accuracy of about 90% [14]. 

However, it is worth noting that in addition to clouds there 

are other problems in satellite images that interfere with the 

successful detection of the forest pathology dynamics. They 

include defocusing, foreign objects and their shadows, 

turbulence, noise, etc. Consequently, such image may be 

unsuitable for analysis in spite of nil clouds conditions. 

Thus, research in the field of methods and algorithms to 

automate the implementation of a satellite image series over a 

long period of time for forest pathology determination is 

required. 

2. Finding of forest pathologies in image series 

For automated determination of forest pathology dynamics it 

is necessary to have a sufficiently large image series concerning 

the region of interest. Images from the Copernicus open system 

are often used for this purpose [5]. From almost all satellite 

systems images of medium and high resolution are presented in 

the form of multispectral images. This feature of these images 

makes the selection of channels giving more information about 

typical objects under investigation possible, because it can 

exclude unnecessary information concerning foreign objects and 

emphasize the data which is important for the task. 

Transformation of the image by the principal component 

method will allow allocating of the most significant reflected 

spectra, excluding chartjunks but without data loss. In this 

method, the first component emphasizes the spectral contrast as 

much as possible, while the second one reflects the boundaries of 

the contrast change. This approach allows improving the results 

of manual (visual) interpretation and automatic (semi-automatic) 

classification [3]. 

For the study of vegetation most indices are based on the 

difference between the spectral profile of healthy organics and 

the profile oppressed by diseases or pests. The most actively 

vegetating plant communities absorb more radiation in the red 

zone of the spectrum and reflect more in the near infrared scope 

compared to other objects [18]. The most commonly used 

standardized index NDVI [11]: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
, 

where, 𝑁𝐼𝑅 is the reflection in the nearest infrared zone of the 

spectrum, 𝑅𝐸𝐷 is the reflection in the red region of the spectrum. 

It should be borne in mind that the NDVI index is quite rough, 

especially with high and low canopy density. Therefore, it has 

been replaced by the less sensitive soil index MSAVI2 (Modified 

Soil Adjusted Vegetation Index 2) [12]: 

𝑀𝑆𝐴𝑉𝐼2 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 − 𝐿
∗ (1 + 𝐿), 

where, 𝑁𝐼𝑅 is the reflection in the nearest infrared region of the 

spectrum; 𝑅𝐸𝐷 is the reflection in the red region of the spectrum, 

𝐿 is the coefficient, which is by the formula: 

𝐿 = 1 −
2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 ∗ 𝑅𝐸𝐷)

2
 . 

The official resource of the Copernicus project was used to 

obtain images in the conducted studies [5]. The selection of 

image series from this portal can be done interactively through 

search tools or using public API. In interactive mode, the search 

area of interest, dates of images, cloud parameters, types of 

satellites, types of images and so on, can be specified. The 

following parameters were used to study the proposed and 

standard methods: 

1. The coordinates of the study area: (N53.44835°, 

E34.26086°) – (N53.40170°, E35.37905°). 

2. Period: 2018-05-15 – 2018-10-15 (the vegetation period in 

2018). 

3. Satellite Sentinel-2. 

4. Cloudiness: 0%. 

With these search parameters 61 images are displayed in the 

results. 

Similar results are obtained when using the OData API when 

prompted. 

After analyzing the results visually, you can see that some 

images have noise (including elements of clouds). Due to such 

defects (noise, clouds), problems may arise in the following 

analysis of the images. If images with defects are immediately 

used for forest pathologies recognizing, the probability of 

erroneous results increases for both: monitoring and training 

tasks. Therefore, it is necessary to carry out additional processing 

with a series of received images to filter out noisy and defective 

ones. Often 1-2 images with noise or clouds in the analyzed area 

can lead to an erroneous forecast of forest pathology dynamics. 

3. Detection of images suitable for determining 
the forest pathology dynamics 

Experiments have proved that the currently used approaches 

to determine images without clouds and distortion, used in 

Copernicus or in a number of modern GIS (eg QGIS) make a 

number of errors. For example, for the conditions described in 

the previous paragraph, the Semi-Automatic Classification 

Plugin (SAC) from the QGIS package ( that is used very often to 

solve similar problems) has identified 6 "ideal" images over the 

past 5 months (with the criterion of nil clouds). Besides, the 

frequency of images is irregular (having intervals in images of 

54 days). These indicators in some types of pathologies are 

insufficient. 

It is worth noting that among the images removed by the 

module there are those that could be used to analyze the 

dynamics of forest pathology. Most often these are the images 

which are partially covered by clouds, but the area of interest in 

them is not distorted. It should be mentioned that the manual 

selection of a series of images in practice is time-consuming and 

is not popular. 

The paper proposes an alternative approach to the selection 

of a series of images. The main idea of the approach is that it 

involves proceeding not from the parameters of clouds or 

distortions, but from the parameters of the area of interest and its 

specific points and parameters. To do this, it is proposed to use 

key points based on one of the known descriptors. In this case, 

the image is considered suitable for a series of images if and only 

if a predetermined percentage of key points of interest, calculated 

from the reference image can be found in the candidate image. 

The proposed algorithm consists of two stages. 

Stage 1-pre-training in the initial image: 

1. Manual selection of the single reference image that shows the 

area of interest. 

2. Marking of the area of interest. It is important to take into 

account that the area should not be too small (otherwise the 

number of key points will not be sufficient) for the stable 

operation of the algorithm. 

3. Obtaining reflection layers in the near infrared and red 

spectral region (𝑁𝐼𝑅, 𝑅𝐸𝐷): {B04, B8A}. 

4. Formation of a monochrome image by the algorithm 

𝑀𝑆𝐴𝑉𝐼2: 

𝑀𝑆𝐴𝑉𝐼2 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 − 𝐿
∗ (1 + 𝐿). 



5. Calculation of key points of interest, computation of their 

descriptors. 

After the first stage we get a reference vector of descriptors 

regarding key points of interest 

Stage 2– automated selection of a series of images with 

neither distortions nor clouds covering of the area of interest: 

1. Getting a snapshot from Copernicus system via internal API. 

2. Selection of reflection layers from the obtained image in the 

nearest infrared and red spectral regions (𝑁𝐼𝑅, 𝑅𝐸𝐷). 

3. Selecting an area by applying a mask to the image using the 

logical « AND » operation by means of a single mask of the 

area of interest: 𝑅𝑒𝑠 = 𝐼𝑚𝑔 & 𝑀𝑎𝑠𝑘. 
4. Getting of layers in the spectra 𝑅𝐸𝐷, 𝑁𝐼𝑅: {B04, B8A} 

5. Formation of a monochrome image according to the 

transformation algorithm 𝑀𝑆𝐴𝑉𝐼2. 

6. Calculation of key points and their descriptors. 

7. Comparison of the obtained descriptors and those obtained 

from the reference image.  

(𝑓 ∗ 𝑔)𝑖 ≝ ∑ 𝑓𝑗
∗𝑔𝑖+𝑗

𝑗

, 

where 𝑖 is dragging between the sequences relatively to each 

other and the superscript in the form of an asterisk means 

complex conjugation. If the number of similarities is more than 

some threshold value N, add the image to the series. If there are 

some images in the Copernicus system obtained within the 

decided time period, proceed to step 1. 

4. Key point detectors and descriptors 

At the moment, there are many well-proven methods of 

identification (detection) of key points. The most widespread of 

them were investigated in the work. 

One of them is the Harris method [6]. The principle of the 

method is that for the image under consideration 𝐼 a window 𝑊 

is allocated with the center at the point(𝑥, 𝑦) then it is diddled 

towards (𝑢, 𝑣). The size of the selected window depends on the 

size of the image. Then the sum of squared differences between 

the initial and diddled window (𝐸(𝑢, 𝑣)), is calculated using the 

formula: 

𝐸(𝑢, 𝑣) = ∑ 𝑤(𝑥, 𝑦)(𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦))
2

≈

(𝑥,𝑦)∈𝑊

 , 

≈ ∑ 𝑤(𝑥, 𝑦)(𝐼𝑥(𝑥, 𝑦)𝑢 + 𝐼𝑦(𝑥, 𝑦)𝑣)
2 

≈ (𝑥, 𝑦)𝑀 (
𝑥
𝑦)

(𝑥,𝑦)∈𝑊

 

where 𝑤(𝑥, 𝑦) is impulsive response (Gaussian function is the 

most popular); 𝑀 is autocorrelation matrix: 

𝑀 = ∑ 𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

(𝑥,𝑦)∈𝑊

, 

With large changes in the direction of the function 𝐸(𝑥, 𝑦) in 

the direction 𝑥 and 𝑦 large modulo the eigenvalues of the matrix 

𝑀. are obtained. Due to the complexity the matrix eigenvalues 

calculations, a response measure 𝑅, is often used, determined 

from the formula: 𝑅 = 𝑑𝑒𝑡𝑀 − 𝑘(𝑡𝑟𝑀)2 > 𝑘,  where 𝑘 is the 

empirical constant from the interval [0,04; 0,06]. 

In this case the value 𝑅 will be positive for the angular key 

points. The local maxima of the response function in the 

neighbourhood of a given radius are calculated in the midst of 

the identified points, and these obtained points are selected as 

angular key points. 

The advantage of the considered method is its stability to 

rotations and exceptionally to affine transformations of the 

image. But as for disadvantages, a significant sensitivity to noise 

in the image should be mentioned. There is one more detector of 

key point detection similar to the Harris method. It is the Shi-

Tomasi angle detector [15], which differs in the calculation of 

the response measure. This method computes eigenvalues 

directly, so finding angles will be more stable. The bottom line 

lies in defining a threshold value and if the calculated value is 

more than the threshold, the point is considered an angle, in other 

words, a special point. 

The above mentioned methods determine the key points 

working with the pixels of the image. There is an alternative 

approach, which involves the application of machine learning 

algorithms. For illustrative purpose of such methods the FAST 

method is chosen, the principle of which lies in building decision 

trees to classify pixels [13]. 

The method is based on the following: for each pixel p we 

consider a circle with a radius of 4 pixels, inscribed in a square 

area with a side of 7 pixels. On the basis of the selected region, 

the importance of the point is concluded. Each of the pixels of 

the circle (the circle includes 16 pixels) relative to the pixel p can 

be in one of three States: 

𝑆𝑝→𝑥 = {

𝑑, 𝐼𝑥 ≤ 𝐼𝑝 − 𝑡 (𝑑𝑎𝑟𝑘𝑒𝑟)

𝑠, 𝐼𝑝 − 𝑡 ≤ 𝐼𝑥 ≤ 𝐼𝑝 + 𝑡 (𝑠𝑖𝑚𝑖𝑙𝑎𝑟)

𝑏, 𝐼𝑝 + 𝑡 ≤ 𝐼𝑥 (𝑙𝑖𝑔ℎ𝑡𝑒𝑟)

. 

For each 𝑥 and found 𝑆𝑝→𝑥 for each 𝑝 ∈ 𝑃 (𝑃 is the variety 

of all pixels of the training image set) the set is divided into 3 

subsets of points 𝑃𝑑 (darker), 𝑃𝑠 (similar), 𝑃𝑏 (lighter). Then the 

decision tree is built. According to the results of this decision 

tree, the angles on the test images are determined. 

A key drawback of this approach connected with identifying 

special points is the order in which the points are selected and 

which influences the effectiveness of the work. It is also 

necessary to take into account the fact that there may be other 

key points in the environment of the initial point and in this case 

the method may be fallible. 

Image distortion is a significant obstacle in the operation of 

detectors. This is because the algorithm may fail to detect key 

points on subsequent frames of the same area due to various 

frame changes. Images of the same area taken by different 

spacecraft may differ owing to the deviations in sensors, shooting 

conditions (position of the vehicle, season of the year, 

atmosphere). In the conducted researches the work of detectors 

was contrasted taking into consideration the following types of 

distortions: blurring and darkening (they can occur due to 

atmospheric phenomena). A number of images of the specified 

area were taken, then artificially with the help of graphic editors 

distortions such as darkening and blurring were made. After that, 

measurements of operating time took place and a number of 

points in the initial images was identified. Besides, the key points 

on the distorted images were also searched and the found points 

were compared with the reference ones. Thus, a percentage 

discrepancy between the key points of the reference image and 

the distorted one was defined. 

Less resistant to blurring turned out to be the FAST method. 

With this type of distortion, the method makes an error of about 

38% of the found points. For the same set of images, the Harries 

method made approximately 1.5% of errors. So did the Shi-

Tomasi method. Thus, the invariance of the Harries and Shi-

Tomasi methods in regard to distortions of blurring type can be 

confirmed. In the second type of distortions (darkening) the 

FAST method also gave worse results. In this case the error was 

about 43%. And both methods: of Harries and of Shi-Tomasi 

showed invariance with respect to this type of distortion. 

However, it is necessary to take into account the fact that 

these methods are adapted to the objects of artificial origin, while 

space images are more natural, that is they have got a more 

monotonous texture. Therefore, the criterion of the number of 

found key points is more important. 

In studied images of the forest both Harries and Shi-Tomasi 

methods found approximately 73.16% fewer key points than the 

FAST method. At the same time the search time for points was 

approximately 78.57% of the search time consumed by the FAST 

method. 

On the basis of the conducted researches it is possible to draw 

a conclusion about further application of the FAST method in the 



further experiments. Since the number of key points found in 

images is of higher priority than the invariance in respect to 

image distortions. 

The second stage of the study was devoted to the application 

of detectors capable of determining the unsuitability of the image 

in the task of forest pathology monitoring based on the algorithm 

proposed in the previous section. 

If the image is suitable, the FAST method finds about 89-

93% of the reference points in the image. Fig. 1 shows pictures 

taken 23.05.2019 and 02.06.2019. Fig. 1 illustrates the results of 

the FAST method for these images with the coincidence of key 

points reaching 95%. 

 
Fig 1. Satellite images of the lake «Krugloe» area, taken 

23.05.2019and02.06.2019 

 
Fig 2. Key points of the FAST method for images in fig.1 

However, in cases of the image impropriety, this method 

finds about 50-70% of the reference points. fig. 3 shows images 

taken 23.05.2019 and 25.06.2019 and fig. 4 shows the results of 

the FAST method, where the coincidence of key points is 70%. 

 
Fig. 3. Satellite images of the lake «Krugloe» area, taken 

23.05.2019 и 25.05.2019 

In addition to this investigation there were studies in regard 

to other methods, when the number of points is not as large as 

with the FAST method. These are Harries and Shi-Tomasi 

methods. 

The results of similar test of Harries and Shi-Tomasi methods 

differ by about 2-3%. In the case of good images, reference point 

correlation is approximately 80-95%.  

Exemplarily the results of the methods on the same images 

similar to the FAST method are presented (fig. 1). The Harries 

method matched 93% and the Shi-Tomasi method matched 95%. 

As applied to unsuitable images, the key point correlation is 

approximately 0-33%. For purpose of illustration the results of 

the methods in the same images used by FAST method are 

presented (fig. 3). The Harries method as well as the Shi-Tomasi 

method had 0% of matching. 

 
Fig. 4. Key points of the FAST method for images in fig. 3 

All these conducted researches have resulted in the 

conclusion that Harries and Shi-Tomasi methods are more 

preferable than the FAST method. This is due to the fact that 

these two methods have a much larger difference between the 

thresholds of usable and unusable images comparing to the FAST 

method. 

5. Research results 

The final studies were the experiments aimed at finding 

satellite images free of clouds and other noise. To compare the 

results of the developed algorithm, the QGIS SAC module was 

used. The result of the search for images with 0% nebulosity in 

the SAC module accounted for 6 images, with a maximum 

nebulosity of 100% there were 61 images. The developed 

algorithm used in the same area and time limitations having the 

threshold value of suitable images equal to 89% gave the result 

of 9 images, which is 30% better than SAC. 

To confirm the operation of the algorithm a manual selecting 

of all images took place, which resulted in 15 suitable images. 

6. Conclusion  

The article analyzes the process of forest pathology 

monitoring. The necessity of search automation applied for 

processing suitable forest images obtained from satellites was 

realized. Empirical studies connected with the application of key 

point detectors in the image were conducted in order to assess the 

applicability of the image for further processing and monitoring 

of forest pathology. 

The studies revealed that a large number of key points is a 

hindrance in determining the suitability of the image, that is why 

the FAST detector was not introduced in further studies. 

In the final experiments, it was confirmed that the proposed 

method of identifying suitable images for forest pathology 

monitoring produces results by 30% better than the well-proven 

QGIS SAC module. As a result, more images can be obtained for 

better tracking of pathology dynamics. However, it should be 

borne in mind that the result of the work depends not only on the 

chosen method of key point detection, but also upon the threshold 

value of the key point correlation accuracy  
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