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In the present paper the solutions based on cyclographic method are considered on the example of two applied tasks: generation 

of road surface forms and pocket machining process engineering. Geometric structures based on cyclographic mapping of space E3 on 

plane E2 and the corresponding mathematical models in the form of systems of parametric equations are provided. On the basis of the 

developed models, analytical solutions to the problems of shaping the surface and linear forms of the studied objects in the areas of 

road design and surface treatment of mechanical engineering products were obtained. The models develop the authors’ previous 

research and are aimed at comprehensive solution to the problems of surface form generation in application to the two mentioned 

tasks. 
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1. Introduction 

Cyclography as a method of representation of space En on 

space En-1 has appeared at the turn of XIX century owing to the 

research of West European geometers [6]. As shown by the vast 

body of research later conducted by Russian and foreign 

scientists, the cyclographic method, previously considered an 

instrument of theoretical analysis [3-5,10,13], proved effective 

in solution of various applied tasks of geometric optics 

[10,12,16], Computer Aided Geometric Design (CAGD) 

[11,12], road surface form modeling [9,11], pocket machining 

of engineering products [7,8], etc. 

In the present paper, in further development of practical 

application of cyclographic method, the research results 

summarizing the authors’ previous research in computer aided 

geometric modeling of road surface forms and process 

engineering of pocket machining are considered. 

2. Elements of theory of cyclographic modeling 
and solution of practical tasks on its basis  

2.1. Computer aided geometric modeling of 
automotive road surface forms 

Formation of mathematical models of automotive road 

surfaces is an essential task of their design. Geometry of these 

surfaces has direct influence on traffic safety. Therefore, if the 

geometry does not conform to the current norms and regulations 

[1], it is not possible to cancel out this issue by means of 

various roadway coverings. 

Modern mathematical modeling of road surface forms is 

based on several approaches. The most widely known of them 

are considered in papers [2,17,18]. These approaches are aimed 

at conforming to the current state regulations [1]. According to 

these regulations, road surface on straight road segments must 

have dual-slope profile consisting of segments of straight lines 

of certain constant incline, while on circular road segments road 

surface must have single-slope profile. 

In the present paper geometric modeling of road surface 

forms is considered on the basis of cyclographic mapping of 

road axis. Road axis is considered given in the form of a smooth 

spatial curve:  
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where functions ( ), ( ), ( )x t y t z t have continuous derivatives of 

up to the second order inclusive with respect to parameter t 

within range  0 ,T T , at that, in every point within said range 

rank '( ), '( ), '( ) 1x t y t z t  . 

A cyclographic image of road axis as a spatial line 

constitutes an envelope of one-parameter multitude of bases of 

cones of revolution, vertices of which belong to road axis ( )P t . 

The equations of the envelope with half-angle of generatrix 

incline at the vertex β = β(t) are of the following form [11]: 
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Simultaneous solution of the equations (1) and (2) allows us 

to acquire a ruled surface, parametric equations of which have 

the following form:  
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Curves with vertices belonging to the given curve ( )P t are 

generated upon intersection of surface (3) by planes normal 

with respect to orthogonal projection of road axis 

1( ) ( ( ), ( ))P t x t y t . The acquired profiles are different from the 

conventional ones conforming to current norms and regulations 

[1]. It is therefore necessary to transform the acquired ruled 

surface into a linear surface conforming to the norms. This 

transformation is considered in paper [11]. 

In order to provide required carriage way (roadside) width, 

initially, curves equidistant with respect to road axis orthogonal 

projection 1( )P t  are constructed. Cylindrical surfaces projecting 

with respect to plane (xy) are then constructed on these curves. 

Intersection of these surfaces and the transformed ruled surfaces 

results in generation of carriage way edges. The equations of 

these edges and road axis (1) allow us to acquire the sought 

ruled surfaces of carriage way. It is possible to acquire roadside 

surfaces bounded by carriage way edges and roadside edges in a 

similar fashion.  

For the cases of segments straight and circular 

(superelevated) in map projection, half-angle β in equations (2) 

is constant. As an example, a computer rendering of straight 

road segment acquired on the basis of cyclographic mapping is 

depicted on fig. 1. 
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Fig.1. Computer aided cyclographic modeling of road surface 

forms on straight road segment 

The transition segments are the most complex in road 

surface form design. The transition road segments have a 

particular feature of gradual change of cross profile from dual 

slope characteristic to straight segment to single slope 

characteristic to circular segment. Scheme of road surface 

generatrix incline variation on transition segment is presented 

on fig. 2. 

For transition segments a function of half-angle variation β 

= β(t) is applied. The plot of half-angle variation function is 

depicted on fig.3; it describes law of road surface generatrix 

incline variation with respect to parameter t of road axis. The 

function must be continuous and single-valued within its 

domain of definition. The function must be smooth with no less 

than second order of smoothness in junction points in the 

interest of traffic safety [18]. 

 
Fig.2. Scheme of road surface form generatrix incline variation 

on transition segment 

 
Fig.3. Plot of function of road surface form generatrix incline 

variation on transition segment 

 

In paper [18] in order to achieve the required order of 

smoothness of junction of carriage way edges and roadside 

edges it is proposed to apply the following spline function of 

the fifth order as a function of incline variation: 
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By combination of the expressions (4) and (2) and by 

performing certain necessary rearrangements, the equations of 

carriage way edges for transition segment and, correspondingly, 

the sought road surface form with variable generatrix incline are 

acquired. The result of computer aided modeling of transition 

segment surfaces on the basis of cyclographic mapping is 

presented on fig. 4. 

In conclusion, the overall road surface form is divided into 

a number of structural segments: straight in map projection, 

circular (superelevated) and transition. A mathematical model 

taking into account essential features of road surface form 

generation is defined for each corresponding road segment. 

Calculation and rendering of road surface form on each road 

segement is readily realized by computer aided algebra systems 

due to parametric form of model representation. 

 
Fig. 4. Computer aided cyclographic modeling of road surface 

forms on transition road segment 

Fig. 5 represents the compound result of computer aided 

road surface form modeling. 

 
Fig.5. Compound cyclographic model of road surface form 

2.2. Computer aided geometric modeling in 
pocket machining process engineering  

Pocket machining process engineering on NC units requires 

cutting tool trajectory calculation and optimization. A cutting 

tool moves along equidistant trajectories called “offset curves” 

(OC), gradually approaching the workpiece contour as it cuts. 

An equidistant curve is a curve of fixed distance from a given 

curve. The problem of optimization of OC generation includes 

the following tasks: analysis and trimming of non-working OC 



segments and analysis and trimming  of opposing OC of 

internal (island) and external boundary contours [4, 5, 7]. 

OC family modeling for multiply connected area bounded 

by closed contours of pocket surfaces is performed on the basis 

of cyclographic mapping of Euclidean space. The modeling is 

considered in the view of Medial Axis Transform (MAT) [16]. 

MAT is a spatial curve reconstructed in space on the basis of 

cyclographic mapping of geometric information on flat area and 

its boundary contour. MAT is generated upon intersection of 

modeled α-surfaces, generatrices of which are inclined to the 

area on angle α = 45°. 

Pocket surface with islands in plane (xy) is shaped by closed 

curvilinear contours consisting of arches of curves subsequently 

connected end-to-end with order of smoothness С2 (fig.6). 

External boundary contour a(a1,…,an) is described by equations 

of curves ai(i=1..n), of which it consists: 

: ( ( ), ( )),i ai a i a i ia r x t y t t R  .               (5) 

Internal contour b(b1,…,bk) consists of arcs of curves 

bj(j=1...k): 

:   ( ( ), ( )),   j bj b j b j jb r x t y t t R  .             (6) 

Internal contour c(c1,…,cu) consists of arcs of curves 

cu(u=1...m) [8]: 

:   ( ( ), ( )),   u cu c u c u uc r x t y t t R  .       (7).  

 

 
Fig. 6. The initial curvilinear contours of pocket a  

and islands b and c 

With the help of expressions (8) it is possible to acquire 

parametric equations of evolutes of composite curves a, b, and 

c. For ea: ( ( ), ( ))ea i ea ix t y t , eb: ( ( ), ( ))eb j eb jx t y t , and  ec:

( ( ), ( ))ec u ec ux t y t correspondingly: 

:   ( )ai ea i ai ai aie r t r R n  , 

    
:   ( )bj eb j bj bj bje r t r R n  ,                         (8) 

:   ( )cu ec u cu cu cue r t r R n  , 

 

where  Rai, Rbj и Rcu represent curvature radiuses; 
ain , bjn , 

and 
cun represent unit vectors of curve normals. For evolutes  

eai, ebj, and ecu let us construct their spatial images - curves  mai, 

mbj, and mcu - keeping in mind that applicate z is negative for 

internal contours: 

:   ( ) ( , , )ai ma i ea ea eam r t x y z , 

:   ( ) ( , , )bj mb j eb eb ebm r t x y z ,                        (9) 

:   ( ) ( , , )cu mc u ec ec ecm r t x y z , 

where 2 2( ) ( )ea ai ea ai eaz x x y y     ,

2 2( ) ( )eb bj eb bj ebz x x y y     , 
2 2( ) ( )ec cu ec cu ecz x x y y    

. 

α-surfaces Pai, Pbj, and Pcu are formed by pairs of curves  ai 

and mai, bj and mbj, cu and mcu, serving as generatrices (fig. 7): 

 
: ( , ) ( ) ( ( ) ( ))ai Pi i ma i i a i ma iP r t l r t l r t r t   , 

: ( , ) ( ) ( ( ) ( ))bj Pj j j mb j j b j mb jP r t l r t l r t r t   ,     (10) 

     
: ( , ) ( ) ( ( ) ( ))cu Pu u u mc u u c u mc uP r t l r t l r t r t   . 

 
Fig.7. α-surface formation 

Geometric MAT is generated as a composite spatial curve of 

pairwise intersection of α-surfaces (fig.8). 

( ) ( ) ( )ai bj ai cu bj cuMAT P P P P P P . 

 
Fig.8 α-surfaces of external and internal contours: 

Pai,  Pbj ,  Pcu and MAT 

By pairwise intersection α-surfaces generate curves si. A 

combination of curves si belonging to α-surfaces constitutes a 

continuous multitude of points, which are α-images of points of 

intersection between the α-surfaces and plane (xy). If  
i ais P , 

then curve ai is an α-projection (image) of curve si. 

Correspondingly,  if i bjs P , then curve bj is an α-projection of 

curve si and if 
i сus P , then curve cu is an α-projection (image) 

of curve si. 

Therefore, curves ai, bj, and cu constitute branches of  one 

common curve of intersection between plane (xy) and an 

envelope of one-parameter multitude of α-cones with vertices 

on si and axes perpendicular to plane (xy). Base of each of the 

cones in plane (xy) is a circle of radius R tangent to curves ai, bj, 

cu, or ai, cu,  or ai, bj, or bj, cu. Therefore, in plane (xy) a 

continuous multitude of points (x, y, R=z) constituting centers 

of circles of radiuses R=z is generated. Obviously, this 

multitude of points and circles represents MAT. 

The acquired α-surfaces are sectioned by means of a 

horizontal bundle of planes along the z axis with step 

zi=hi==const. These lines are subject to analysis with 

subsequent trimming of non-working segments according to 

MAT. By means of orthogonal projection on plane (xy), the 

acquired level curves generate a family of OC (fig.9). Level 

lines of the internal contours Linb (i, j), Linc (i, u) level lines of the 

external contour Lext (i, k) are defined by the following 

parametric equations correspondingly: 

( , ) ( , ) ( , ) ( , )( ( , ), ( , ), ( , ))inb i j inb i j i j inb i j i j inb i j i jr x h y h z h   , 



( , ) ( , ) ( , ) ( , )( ( , ), ( , ), ( , ))inc i u inc i u i u inc i u i u inc i u i ur x h y h z h   ,(11) 

)),(),,(),,(( ),(),(),(),( kikiextkikiextkikiextkiext hzhyhxr  , 

where i represents the index of sectional plane; τj ,τu, and τk 

represent parameters of shape of segments Linb(i,j) , Linc(i,j), and 

Lext(i,k). 

 
 

Fig.9. A family of offset curves OC and medial axis MA(xy) 

Orthogonal projection of MAT on plane (xy) is a curve, 

which constitutes medial axis MA. 

The proposed geometric solution to the problem of OC  

family generation for multiply connected area with curvilinear 

boundary contours in plane (xy) is different from the known 

algebraic solution [4,5] in the following: 

1. The proposed solution features a vivid graphic 

representation of all the multitude of geometric objects and 

model conditions in interrelation and interconnection with each 

other  in virtual electronic space.  

2. Mathematical model of the proposed geometric model of 

OC family generation features parametric form of 

representation of its equations.  

The mentioned differences make it significantly easier to 

acquire and analyze the solution to the task of OC family 

generation, which facilitates control programming for pocket 

machining on NC units. 

3. Conclusion 

The considered cyclographic solutions to two urgent and 

diverse applied tasks confirm practicality and unveil potential 

of cyclographic modeling method. 
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