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In this article, we describe the mathematical model of the reflective surface as a scattering layer with the diffuse substrate and 

randomly rough Fresnel boundary. This model opens the way for a physically correct description of the light reflection processes with 

polarization account and hence enables engineers and designers to obtain much more precise results in their work. The algorithm of 

Fresnel boundary modeling based on the method of mathematical expectations reduces calculation time by constructing the randomly 

rough surface only at the ray trajectory nodes instead of constructing realizations of a random field. As a part of the complete reflective 

surface model, the algorithm made it able for us to model the effect of the average lens emergence. 
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1. Introduction 

Nowadays it is a tradition for light engineering that the light 

polarization state is not considered when modeling light 

distribution. This neglection is acceptable when we deal with 

diffusely reflecting surfaces and a small number of re-reflections. 

On the contrary, we must account the influence of light 

polarization when considering surfaces with a significant 

specular part. The very first reflection changes the state of light 

polarization and this fact affects all the following processes of 

light distribution. 

To date, a series of proceedings devoted to the light 

polarization account has been published [3, 6, 7]. Basing on use 

of ray tracing and local estimations of the Monte-Carlo Method 

they show that accounting of the light polarization state leads to 

quite significant changes not only in the qualitative results but in 

the quantitative results as well. 

However, the mathematical model of multiple reflections 

with polarization account used for estimating the influence of 

polarization showed just the first approximation for the 

quantitative results. Therefore, the following step of the model 

development is to create and use the physically correct model of 

the reflective surface. 

We must consider that the light is always reflected from both 

of the faces of the material surface and the material volume. The 

light penetrates the near-surface layers of the material where the 

light scattering by the material particles occurs. Then, a certain 

fraction of the initial luminous flux re-enters the surrounding 

space. At this point, the role of polarization account takes an 

exceedingly significant part as it influences all the processes of 

the light scattering. 

Thus, the authors decided to develop the model of reflective 

surface, which would account the effects described above. 

Further, the physically correct model will enable us to obtain 

more precise results of light distribution modeling. 

2. Mathematical model of the reflective surface 

When the light penetrates the near-surface layers, the 

processes occurring have the same nature as the radiative transfer 

in turbid media. Additionally, we must account that a real 

material surface is always uneven owing to the most varied 

causes (corpuscular structure of the material, surface treatment 

defects, etc.) and never reflects the light according to only 

specular or only diffuse law but there take place both of them at 

the same time. 

Thus, we decided to represent the reflective surface as a 

scattering layer with a diffusely reflecting plane at the bottom 

and randomly rough Fresnel boundary above (Fig. 1). 

 

Fig 1. Representation of the reflective surface 

in the mathematical model. 

Generally, scattering media are characterized by matrix 

scatter coefficient ,  matrix absorption coefficient   and matrix 

extinction coefficient .     Neglection of dichroism, 

birefringence, and similar effects of the same kind, which are 

inherent only for several materials, enables us to transit to the 

scalar analogs of the matrix coefficients .     

For modeling the reflective surface with the assumptions 

taken above, we need to solve the boundary value problem for 

the vector radiative transfer equation. Let us consider the plane-

parallel system of the scattering layer with a diffuse substrate. 

The layer is irradiated at the angle   by the plane 

monodirectional source with random polarization state. Then one 

can write the problem as 
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where l̂  and ˆl  are the unit vectors of the scattered and incident 

ray directions respectively; 

 N̂  is the normal vector; 

 L  is radiance (Stokes vector); 

 cos ;    
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 is the single scatter albedo; 

 ˆ ˆ( , , )x  l l  is the scatter matrix; 

 ˆ ˆ ˆ ˆR( )  l l N l  is the matrix of the reference plane 

rotation from ˆ ˆl l  to ˆ .̂N l  

3. Randomly rough Fresnel boundary 

One of the most important components of the reflective 

surface model described above is the construction of the 

randomly rough Fresnel boundary. To show the importance of 

taking into account properties of a randomly rough surface one 

can give the cases of observing ocean currents, underwater 

mountain ranges, and shoals by people from outer space. 

For the first time, the deep-sea bottom topography from 

space was observed by American astronaut Gordon Cooper from 

the Gemini 5 spacecraft in August 1965. The first of the Soviet 

cosmonauts were A. G. Nikolaev and V. I. Sevastyanov from the 

Soyuz-9 spacecraft in June 1970. At the same time, they first 

drew attention to the fact that the sea waves, ripples on its surface 

are not an obstacle when observing the topography of the seabed 

from space. 

Then there was a series of other known observations through 

the rough surface of the ocean: 

1. August 1974. G. V. Sarafanov and L. S. Demin observed the 

bottom relief at depth of hundreds of meters from the 

Soyuz-15 spacecraft. They succeeded to see the bottom of 

the Mozambique Gulf that separates the island of 

Madagascar from the African continent. The cosmonauts saw 

a bottom, covered with shafts that stretch along the strait. The 

structure of the strait bottom resembles the structure of that 

of a small river, but the dimensions are many times larger 

than in the river. 

2. June 1975. From the board of the Salyut-4 orbital station, 

P. I. Klimuk and V. I. Sevastyanov observed the bottom of 

the seas and oceans. When flying over the Atlantic Ocean 

from Newfoundland to the Canary Islands, they clearly saw 

ocean currents. Along the European coast of the 

Mediterranean Sea with an emerald strip of subtropical 

greenery, they saw under the water a continuation of the 

continent relief. Continuation of the relief was also visible on 

the eastern coast of South America - three terraces extending 

deep into the Atlantic Ocean. It was visible how far the 

Amazon River carried its muddy waters into the ocean, how 

they were carried away by deep currents under a layer of 

clean water. 

3. June 1978. Underwater relief of the Pacific Ocean bottom in 

the region of the Solomon Islands at depths of up to 400 

meters was observed by V. V. Kovalenok and 

A. S. Ivanchenkov. During the flight, the cosmonauts first 

made an attempt to derive the laws of the most favorable 

conditions for observing underwater formations. These 

observations were carried out from an orbit close to the solar 

one at a small height of the Sun above the horizon.  

Experience shows that the best conditions for observation are 

when the height of the Sun above the horizon is 30°—60°; 

direction from the Sun 90°—130°; viewing angles do not exceed 

30°—40° from the direction of the nadir and, of course, outside 

the glare zone. 

In the cases described above, the so-called statistical lens 

effect appeared due to a randomly rough Fresnel surface at the 

ocean-atmosphere boundary. This effect allowed cosmonauts 

and astronauts to observe the bottom of the seas and oceans from 

outer space at great depths. 

The problem of the randomly rough Fresnel boundary 

modeling is unavoidably encountered in the solution of a large 

number of physical problems in various fields. In the majority of 

practical cases, the shape of a randomly rough surface is 

described by a random function of coordinates (and sometimes 

of time). Therefore, scattering on a real surface should be 

considered as a statistical task, which consists in finding the 

probabilistic characteristics of a scattered field from known 

statistical characteristics of the random surface. The methods of 

solving such a problem are the same regardless of the physical 

nature of the roughness [1]. 

Thus, researchers of the radiative transfer processes in the 

ocean-atmosphere system face a similar task when describing the 

effect of the perturbed sea surface on the radiation field.  

There are two ways for solving this problem [4]. In the first 

one, realizations of a random field   are constructed according 

to the randomization principle, then one simulates random 

trajectories l̂  and on their basis calculate the random estimates 

of the sought-for functionals. The main difficulty of employing 

this approach is the necessity to find the intersection points of the 

ray and surface at each trajectory node. In the general case, the 

determination of the intersection coordinates costs much 

computational time. 

The second approach is preferable, therefore. It is based on 

the method of mathematical expectations (Fig. 2). Here, to 

construct an N-component random trajectory we need to have the 

realizations of the random surface only at N points, calculated in 

a certain way [4]. At the points of rays reaching a random 

interface, the selection is made of random realizations of normals 

to the surface. 

 

Fig 2. To the second approach 

of the randomly rough Fresnel boundary modeling. 

4. Algorithm of Fresnel boundary modeling 

In order to make clear the way one can use the second 

approach from the latter section, let us consider [4] an arbitrary 

trajectory of n nodes 

 0 0 0 1 1 1
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where 
ir  is the i-th ray collision point on the surface or in the 

medium; 

 ˆ
il  is a unit vector of the ray direction after the i-th 

collision; 

 
iQ  is the vector weight after i-th collision (its 

components correspond to those of the Stokes vector). 

A set of the random surface point corresponds to the nodes 

of the trajectory: 
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where ( , )x y r  are horizontal coordinates so that ( , );zr r  

 ( ) r  is the random surface roughness function; 

 ˆ ( )N r is the outer normal to the surface at the point 

( , ( )).  r r r  



At the first step, one samples a random value of deviation 
1  

from the interval ( , )m mh h  according to the probability density 

based on the normal distribution. Then one evaluates the distance 

  from the point 0r  to the plane ( )z   r  in the direction 0
ˆ .l  

The coordinates of the first trajectory node are evaluated by using 

the formula 

 1 0 0
ˆ .  r r l  (4) 

Thus, the point 
1r  is the first point of the ray intersection with 

the random surface, provided that there have been no 

intersections before. We allow for this condition by multiplying 

the vector weight 
0Q  by the probability 

0 1( , )P r r  for the ray 

1 0 0
ˆ  r r l  to have no intersections with the surface on the track 

between the points 0r  and 
1.r  

The last statement requires some clarification. In general 

case, instead of 
0 1( , ),P r r  one needs to use another probability 

0 1 1( , | ),P r r ζ  the expression for which has the following form: 
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 , ,x y    are the random functions possessing normal 

one-dimensional distributions with the parameters 

(0, ),  (0, )x  and (0, )y  respectively; 
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0  is the minimal distance from the point r  to the 

medium boundary in the direction ˆ.l  

The standard deviations 
x  and y  are not independent and 

connected with the standard deviation   of the random quantity 

  by the following expression 

 | (0) |,x y K 
      (6) 

where ( )K K   r  is the correlation function of deviations for 

isotropic undulation. In case of anisotropic undulations, we have 

to set functions ,xK  and , .yK  In applied calculations, functions 

of the form are often used as a correlation function: 
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where   (and  ) are the parameters determining the force and 

shape of undulation. 

Calculation of probabilities (5) is necessary on each step of 

modeling trajectory. Since the formula (5) is extremely 

complicated for direct calculation and practically inapplicable, 

the formulae obtained in [1] are often used when solving such 

problems provided that 
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A random realization of the normal vector 1N̂  is sampled 

from the set of the unit vectors 0
ˆ ˆ ˆ ˆ{ : ( , ) 0, } N N l N  by the 

following way. Using normal distribution, one model 
xz  and yz  

with the distribution parameters (0, )x  and (0, )y  

respectively.  

The quantities 
xz  and yz  are substituted into the following 

formula and one evaluates the components of the vector N̂  
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Having obtained the values of 1N̂  and 0
ˆ ,l  we are able to gain 

[5] the Fresnel reflection factor 0 1
ˆ ˆ( , ) :R l N  
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where n is the refractive index of the material with respect to air. 

We consider 0 1
ˆ ˆ( , )R l N  as a probability for the ray 0l̂  having 

collided with the facet of normal 1N̂  to undergo the mirror 

reflection, and 0 1
ˆ ˆ1 ( , )R l N  as a probability for the ray to 

undergo refraction. 



In this way, the coefficient 0 1
ˆ ˆ( , )R l N  is used to choose the 

type of interaction with the surface from two possible outcomes: 

reflection and refraction. Having made the choice, one defines 

the vector 1l̂  according to the formulae 
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After that, one can make the transformation of the vector 

weight according to the following expression 
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where 0 0 0 1
ˆ ˆ ˆ ˆR( )  N l l l  is the matrix of the reference plane 

rotation from 0 0
ˆ ˆN l  to 0 1

ˆ ˆ ;l l  

 1 1 0
ˆ ˆ( , , ) r l l is the Mueller matrix for reflection or 

refraction depending on the choice based on the 

coefficient 0 1
ˆ ˆ( , ).R l N  

The next steps of the algorithm have the same logic with the 

exception that we need to account light scattering in the material 

medium and thus, solve a rather complicated problem of 

estimating probabilities and evaluating ray weights. 

5. Conclusion 

At the current stage, the realization of the algorithm 

described above enabled us to model the effect of the average 

lens emergence. Further, we are going to use the model of the 

randomly rough Fresnel boundary as a part of the reflective 

surface model (Section 2). 

Basing on the reflective surface representation as a scattering 

layer with the diffuse substrate and randomly rough Fresnel 

boundary above, we will be able to construct a complete model 

of reflection with the account of scattering in the material 

volume. 

The main role in solving the problem (1) should be given to 

the analytical methods [2], as they are much faster than numerical 

those. This approach will pave the way for us to integrate the 

model into existing methods, used in computer graphics (e. g. ray 

tracing, photon maps, local estimations, etc.). It will enable 

engineers and designers to account polarization when solving 

practical tasks and thus obtain much more precise results of light 

distribution calculation and visualization. 

Nevertheless, analytical methods always imply the use of 

certain assumptions, the effect of which on the result is currently 

possible to estimate only by using the Monte-Carlo Methods. In 

the future, it is interesting to compare the two variants of the 

mathematical model and, possibly, combine them, taking into 

account the advantages of each of the variants. 
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