
Multi-windows Rendering Using Software OpenGL in Avionics
Embedded Systems

B.Kh. Barladian1, L.Z. Shapiro1, K.A. Mallachiev3, A.V. Khoroshilov3, Y.A. Solodelov2, A.G. Voloboy1,

V.A. Galaktionov1, I.V. Koverninskiy2

1The Keldysh Institute of Applied Mathematics Russian Academy of Sciences, Moscow, Russia
2FGUP «GosNIIAS» State Research Institute of Aviation Systems, Moscow, Russia

3Ivannikov Institute for System Programming Russian Academy of Sciences, Moscow, Russia

Elaboration of modern airplane cockpit has tendency to use large displays instead of a lot of separate indicators. The large display

should combine information about flight navigation and state of plane equipment. Information coming from a wide variety of devices

should be displayed simultaneously. Therefore multi-windows rendering is vitally important here. Its implementation must be embedded

in real-time operating system which controls the aircraft. Development of a Safety Critical Compositor for multi-windows rendering for

OpenGL SC 1.0.1 software is considered in the paper. It works under the real-time operating system JetOS newly designed for aircraft.

Development is based on the use of extensions designed to work in multi-core systems in addition to standard JetOS partitioning services.

Keywords: aircraft cockpit display, multi-windowing, OpenGL SC 1.0, real-time operating system, embedded systems.

1. Introduction

Modern airborne systems are designed based on the

architecture called Integrated Modular Avionics. A key feature

of this architecture is the capability to execute several functional

applications implementing the software part of avionics systems

on the same computer. The necessary condition for this

capability is time and resource sharing between applications.

This mode of operation is offered by a real time operating system

which is an integral part and most important component of the

airborne system.

In the development of modern airplane cockpits there is a

tendency to use large displays to combine in it information about

the flight navigation and state of plane equipment. Fig. 1 and 2

show the cockpit aircraft evolution from the Sukhoi Superjet to

the MS-21.

Fig.1. Cockpit of the Sukhoi Superjet aircraft.

Fig.2. Cockpit of the MS-21 aircraft.

The number of displays in the cockpit of the MS-21 aircraft

has been reduced in comparison to the cabin of the Sukhoi

Superjet aircraft, but the displays have become much wider and

allow displaying more information.

The flight and equipment operation information is generated

by numerous flight management systems. This information

should be displayed for pilots in the easy-to-read form. The

generated information should be displayed graphically on the

widescreen displays (so called multi-function displays). The

information coming from a wide variety of devices should be

displayed simultaneously. In particularly it may be airspeed,

attitude indicator, altimeter, turn and slip indicator, vertical speed

indicator and so on. At the same time such technical

characteristics as engine speed, oil pressure and fuel quantity

should be displayed too. In addition, it is useful to visualize a

map of the area, various pneumatic, hydraulic and electrical

circuits, data from weather radars, various kinds of warnings, etc.

This information is usually generated by independent subsystems

and should not interfere with each other in accordance with the

requirements of ARINC653 [5].

Nevertheless it is often necessary to display images from

several subsystems on one screen. Modern operating systems

solve this problem by supporting of a multi-window interface

when each application’s content is rendered into its own window.

A simplified approach is to allow each application to open a non-

overlapping window onto the display. While the last method

allows for faster drawing its implementation for safety critical

systems requires significant efforts. A compositor elaboration is

needed to support efficient multi-windowing.

Various approaches to implementation of the compositor for

safety critical systems are considered in [1]. One of compositor

implementations is the CoreAVI’s EGL_EXT_compositor

extension for EGL for OpenGL SC 1.0.1 and OpenGL SC 2.0

[2]. However its source codes are closed ones and it does not

allow to use them for our goal. The OpenGL SC library [3] we

are developing is designed to work under the JetOS operating

system [4]. This defines development specific and imposes

essential requirements to the developed code and algorithms. In

particular, the need of OS certification requires full access to the

source codes of both the OpenGL SC library and the compositor.

On the other hand, when developing the composer we can take

advantage of the specific opportunities of the JetOS to improve

performance. These features, in particular, include the ability to

use several processor cores.

2. Types of Composition

In the paper [1] two main types of graphical composition are

considered – composition into the hardware level and

composition into a framebuffer.

While the benefits of the hardware level composition include

good performance, power conservation and efficiency in dealing

with a large number of updates, this approach requires additional

bandwidth to display all windows. It also requires specific

support for framebuffer driver which is not accessible for us in

currently used hardware.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://istina.msu.ru/workers/12691517/
https://en.wikipedia.org/wiki/Flight_management_system
https://en.wikipedia.org/wiki/Multi-function_display

The composition into the framebuffer approach combines

elements from multiple applications and off-screen buffers into a

single framebuffer. The framebuffer then renders the data to the

display. The composition into the framebuffer requires only one

layer to display all buffers. In fact it is the only available

approach in our case. Data visualization scheme used is shown

in Fig. 3. Each application renders the data using OpenGL SC in

own off-screen buffer. These buffers then are passed to the

compositor. It forms from them the single framebuffer layer and

visualizes it on display by using frame buffer library. The main

problem here is effective synchronization of independently

running applications and the compositor. The implementation of

synchronization depends on means provided by the operating

system.

Fig. 3. Compositor - Information flow to Display

3. Solution via JetOS partitions

First implementation of compositor was based on using

standard JetOS tools developed according ARINC 653 standard

[5]. In this case several applications and compositor work in a

single processor. Each application and compositor work on their

own JetOS partitions. The JetOS provides memory and time

partitioning in accordance to the ARINC 653 requirements.

Partitions are scheduled on a fixed cyclic basis. To assist this

cyclic activation, the OS maintains a major time frame of fixed

duration, which is periodically repeated throughout the module’s

runtime operation. Partitions are activated by allocating one or

more “partition windows” within this major time frame. Each

“partition window” is defined by its offset from the start of the

major time frame and expected duration. The order of partition

activation is defined by the system integrator using configuration

tables. This provides a deterministic scheduling methodology

whereby the partitions are furnished with a predetermined

amount of time to access processor resources. A module may

contain several partitions running with different periods.

The rendered images are passed from the application to the

compositor by using special shared memory blocks. Each

application uses the own memory block for image rendering.

This memory block has read-only access for the compositor.

Synchronization between applications and compositor is

provided by queuing messages transmitted between partitions via

special communication channels. Two channels are used

between each application and the compositor. First channel is

used by application to inform the compositor that image is ready

to display. The second channel is used by the compositor to

inform the application that the image was displayed and the

application can use the image buffer again. The application

synchronization scheme can be represented by the algorithm

shown in Fig. 4.

Fig. 4. Application synchronization algorithm.

Appropriately the processing by the compositor images

rendered by applications can be represented by the following

algorithm (Fig. 5):

Fig. 5. Compositor synchronization algorithm.

Let’s consider an example of the compositor work. Resultant

image generated from buffers produced by two applications is

presented in Fig. 6.

Fig. 6. Composition of two application buffers.

Two applications – the Primary Flight Display (PFD) on the

left side of image and the Counter on its right side – work

simultaneously (in fact in line due to the requirements of ARINC

653) and images produced by applications are visualized by the

compositor. Suggested approach works correctly but

visualization speed in given example is insufficient for avionic

applications. Both applications work with speed ~5 frames per

second. There are several reasons for such behavior. First at all

the typical avionic processor PowerPC [6] has low performance.

The second reason is that all partitions work on a single processor

core and have predetermined amount of time to access its

resources. We can slightly optimize this time subdivision only

Application2
2

Application3
3

Buffer1 Buffer2 Buffer3

Compositor

Frame buffer library

Display

Application1
2

not_first = false;

While (true)

{

 If (not_first)

 {

 Wait the message that image was displayed

}

not_first = true;

 Render image

 Sent message that image is ready for display

}

for (int ic = 0; ic < application number; ic++)

{

 Wait not more than 1 millisecond the message that the

rendered image from ic-th application is ready to display

 If the message came

 {

 Display image from the appropriate shared memory

block by using frame buffer library

 Send the message that image from the given application

was displayed

 }

}

taking into account real applications needs. In the given example

the frame time was subdivided in the following manner:

1. PFD – 45ms

2. Counter – 15ms

3. Compositor – 16ms

This schedule provides more or less balanced access to the

processor resources for applications with essentially different

resource requirements.

But future acceleration is possible by using of all processor

cores only. Processor PowerPC (P3041) [6] used by us has four

cores while perspective PowerPC (P4080) [7] can have eight

cores.

4. Multicore solution

In case of multi core system JetOS supports ability to run

multiple modules (instances of JetOS) on one device. These

modules operate independently on different processor cores. This

JetOS feature is called AMP – Asymmetric Multi-Processing.

This AMP feature makes possible to use processor power in

significantly more efficient way. Appropriate project

configuration using AMP feature is called AMP project. AMP

project supports shared memory blocks which we use for images

passing between modules. But it does not provide currently

queuing messages which we used for synchronization in solution

via JetOS partitions. Due to this reason we decided to use small

shared memory blocks for synchronization in multicore solution.

As in the case of previous solution we need to support two events

for synchronization of interaction of each application with the

compositor:

1. Start_copy – when the image is prepared by application and

is ready for display by the compositor;

2. End_copy – when the image was already displayed by the

compositor and the appropriate memory block can be used

again by application for rendering the next frame.

Fig. 7. Event emulation

This pair of events is implemented by using a 16-byte

memory block shared between modules. The first half of this

block is used for Start_copy event and the second half – for

End_copy event. For convenience and a more intuitive interface

we implemented the set of functions which emulates work with

these memory blocks as with events (Fig. 7). As an argument all

these functions use a pointer either to the first half or to the

second half of the appropriate 16-byte shared memory block.

To pass rendered image from application to the compositor

each application uses memory block shared with the compositor.

Now the work of the application can be represented by the

following algorithm (Fig. 8):

Fig. 8. AMP application algorithm.

Appropriately the processing of images rendered by

applications by the compositor can be described by the following

algorithm (Fig. 9):

Fig. 9. AMP compositor algorithm.

At the initialization state all End_copy events are set to

AMP_UP state while Start_copy are set to AMP_DOWN state.

The proposed technology of using multi-core processor

under JetOS allows to increase the speed of visualization for the

example on Fig. 6 till 8.8 frames per second for PFD application

and till 44 frames per second for Counter application. It should

be noted that the rendering speed for application PFD is still

insufficient. Even with one application running in the JetOS

partition solution the rendering speed does not exceed 7.4 frames

per second. When using multi-core technology the speed slightly

increases due to the work of the frame buffer library in a separate

core. Partially it is due to the fact that the PFD application is

overcomplicated itself. Later this application is modified to

increase its efficiency.

Fig. 10a. Example of AMP solution for the compositor.

Visualization of PFD + map + Counters.

#define AMP_UP 1

#define AMP_DOWN 0

typedef int* AMP_EVENT;

/// Get event state.

int AMP_GetEventState(AMP_EVENT ev)

{

 return ev[0];

}

/// Set the event in the state "up".

void AMP_SetEvent(AMP_EVENT ev)

{

 ev[0] = AMP_UP;

}

/// Set the event in the state "down".

void AMP_ResetEvent(AMP_EVENT ev)

{

 ev[0] = AMP_DOWN;

}

/// Infinitely wait while event is in state "down".

void AMP_WaitEvent(AMP_EVENT ev)

{

 RETURN_CODE_TYPE ret;

 while (ev[0] == AMP_DOWN)

 {

 TIMED_WAIT(MILLISECOND, &ret);

 }

While (true)

{

AMP_WaitEvent(End_copy);

AMP_ResetEvent(End_copy);

Render image

AMP_SetEvent(Start_copy);

}

for (int ic = 0; ic < application number; ic++)

{

 If (AMP_GetEventState(Start_copy[ic]) = AMP_UP)

 {

 AMP_ResetEvent (Start_copy[ic]);

 Display image from the appropriate shared memory

block by using frame buffer library

 AMP_SetEvent(End_copy[ic]);

 }

}

Fig. 10b. Example of AMP solution for the compositor.

Visualization of PFD + relief.

Fig. 10c. Example of AMP solution for the compositor.

Visualization of PFD + state of doors.

Fig. 10d. Example of AMP solution for the compositor.

Visualization of PFD + navigation display.

Additional examples of images produced by suggested multi

window approach are shown in Fig. 10. The following rendering

speed was reached for these examples:

Fig. 10a:

PFD – 16 frames per second

Map – 16 frames per second

Counter – 16 frames per second

Fig. 10b:

PFD – 16 frames per second

Relief – 9.2 frames per second

Fig. 10c:

PFD – 10.3 frames per second

State of doors – 21.7 frames per second

Fig. 10d:

PFD – 10.3 frames per second

Navigation display - 21 frames per second

5. Conclusion

Analysis of visualization algorithms for various data used in

embedded avionics systems shows that JetOS partitioning

services alone do not secure the required performance. The use

of extensions for work in multi-core systems provided by JetOS

improves the performance. However, the rendering speed is still

not sufficient in some cases. In order to further increase

performance the possibility of using multi-core processor options

directly in the OpenGL SC library should be considered.

6. References

[1] A Safety Critical Compositor for OpenGL SC 1.0.1 and

OpenGL SC 2.0.

http://www.coreavi.com/sites/default/files/compositor_whi

tepaper_final.pdf.

[2] EGL_EXT_compositor.

http://www.coreavi.com/sites/default/files/coreavi_produc

t_brief_-_egl_ext_compositor.pdf.

[3] B.Kh. Barladian, A.G. Voloboy, V.A. Galaktionov, V.V.

Knyaz’, I.V. Koverninskii, Yu.A. Solodelov, V.A. Frolov,

and L.Z. Shapiro, Efficient Implementation of OpenGL SC

for Avionics Embedded Systems. Programming and

Computer Software, 2018, Vol. 44, No. 4, pp. 207–212.

DOI: 10.1134/S0361768818040059.

[4] K.A. Mallachiev, N.V. Pakulin, A.V. Khoroshilov, Design

and architecture of real-time operating system. Proceedings

of the Institute for System Programming, vol. 28, issue 2,

2016, pp. 181-192.ISSN 2220-6426 (Online), DOI:

10.15514/ISPRAS-2016-28(2)-12.

[5] ARINC Standards Store:

https://www.aviation-ia.com/product-categories.

[6] Universal Data Processor Module MUPD/P3041-VPX 3U,

http://www.nkbvs.ru/products/elektronnie-modyli/vpx-

3u/moduli-universalnogo-protsessora-dannix-mypd-

p3041/.

[7] QorIQ® Processors Based on Field Proven Power

Architecture Technology P-Series.

https://www.nxp.com/products/processors-and-

microcontrollers/power-architecture-processors/qoriq-

platforms/p-series:QORIQ-POWER-ARCHITECTURE-P-

SERIES.

