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Elaboration of modern airplane cockpit has tendency to use large displays instead of a lot of separate indicators. The large display 

should combine information about flight navigation and state of plane equipment. Information coming from a wide variety of devices 

should be displayed simultaneously. Therefore multi-windows rendering is vitally important here. Its implementation must be embedded 

in real-time operating system which controls the aircraft. Development of a Safety Critical Compositor for multi-windows rendering for 

OpenGL SC 1.0.1 software is considered in the paper. It works under the real-time operating system JetOS newly designed for aircraft. 

Development is based on the use of extensions designed to work in multi-core systems in addition to standard JetOS partitioning services. 
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1. Introduction 

Modern airborne systems are designed based on the 

architecture called Integrated Modular Avionics. A key feature 

of this architecture is the capability to execute several functional 

applications implementing the software part of avionics systems 

on the same computer. The necessary condition for this 

capability is time and resource sharing between applications. 

This mode of operation is offered by a real time operating system 

which is an integral part and most important component of the 

airborne system. 

In the development of modern airplane cockpits there is a 

tendency to use large displays to combine in it information about 

the flight navigation and state of plane equipment. Fig. 1 and 2 

show the cockpit aircraft evolution from the Sukhoi Superjet to 

the MS-21. 

 
Fig.1. Cockpit of the Sukhoi Superjet aircraft. 

 
Fig.2. Cockpit of the MS-21 aircraft. 

The number of displays in the cockpit of the MS-21 aircraft 

has been reduced in comparison to the cabin of the Sukhoi 

Superjet aircraft, but the displays have become much wider and 

allow displaying more information. 

The flight and equipment operation information is generated 

by numerous flight management systems. This information 

should be displayed for pilots in the easy-to-read form. The 

generated information should be displayed graphically on the 

widescreen displays (so called multi-function displays). The 

information coming from a wide variety of devices should be 

displayed simultaneously. In particularly it may be airspeed, 

attitude indicator, altimeter, turn and slip indicator, vertical speed 

indicator and so on. At the same time such technical 

characteristics as engine speed, oil pressure and fuel quantity 

should be displayed too. In addition, it is useful to visualize a 

map of the area, various pneumatic, hydraulic and electrical 

circuits, data from weather radars, various kinds of warnings, etc. 

This information is usually generated by independent subsystems 

and should not interfere with each other in accordance with the 

requirements of ARINC653 [5].  

Nevertheless it is often necessary to display images from 

several subsystems on one screen. Modern operating systems 

solve this problem by supporting of a multi-window interface 

when each application’s content is rendered into its own window. 

A simplified approach is to allow each application to open a non-

overlapping window onto the display. While the last method 

allows for faster drawing its implementation for safety critical 

systems requires significant efforts. A compositor elaboration is 

needed to support efficient multi-windowing. 

Various approaches to implementation of the compositor for 

safety critical systems are considered in [1]. One of compositor 

implementations is the CoreAVI’s EGL_EXT_compositor 

extension for EGL for OpenGL SC 1.0.1 and OpenGL SC 2.0 

[2]. However its source codes are closed ones and it does not 

allow to use them for our goal. The OpenGL SC library [3] we 

are developing is designed to work under the JetOS operating 

system [4]. This defines development specific and imposes 

essential requirements to the developed code and algorithms. In 

particular, the need of OS certification requires full access to the 

source codes of both the OpenGL SC library and the compositor. 

On the other hand, when developing the composer we can take 

advantage of the specific opportunities of the JetOS to improve 

performance. These features, in particular, include the ability to 

use several processor cores. 

2. Types of Composition 

In the paper [1] two main types of graphical composition are 

considered – composition into the hardware level and 

composition into a framebuffer. 

While the benefits of the hardware level composition include 

good performance, power conservation and efficiency in dealing 

with a large number of updates, this approach requires additional 

bandwidth to display all windows. It also requires specific 

support for framebuffer driver which is not accessible for us in 

currently used hardware. 
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The composition into the framebuffer approach combines 

elements from multiple applications and off-screen buffers into a 

single framebuffer. The framebuffer then renders the data to the 

display. The composition into the framebuffer requires only one 

layer to display all buffers. In fact it is the only available 

approach in our case. Data visualization scheme used is shown 

in Fig. 3. Each application renders the data using OpenGL SC in 

own off-screen buffer. These buffers then are passed to the 

compositor. It forms from them the single framebuffer layer and 

visualizes it on display by using frame buffer library. The main 

problem here is effective synchronization of independently 

running applications and the compositor. The implementation of 

synchronization depends on means provided by the operating 

system.  

 
Fig. 3. Compositor - Information flow to Display  

3. Solution via JetOS partitions 

First implementation of compositor was based on using 

standard JetOS tools developed according ARINC 653 standard 

[5]. In this case several applications and compositor work in a 

single processor. Each application and compositor work on their 

own JetOS partitions. The JetOS provides memory and time 

partitioning in accordance to the ARINC 653 requirements. 

Partitions are scheduled on a fixed cyclic basis. To assist this 

cyclic activation, the OS maintains a major time frame of fixed 

duration, which is periodically repeated throughout the module’s 

runtime operation. Partitions are activated by allocating one or 

more “partition windows” within this major time frame. Each 

“partition window” is defined by its offset from the start of the 

major time frame and expected duration. The order of partition 

activation is defined by the system integrator using configuration 

tables. This provides a deterministic scheduling methodology 

whereby the partitions are furnished with a predetermined 

amount of time to access processor resources. A module may 

contain several partitions running with different periods. 

The rendered images are passed from the application to the 

compositor by using special shared memory blocks. Each 

application uses the own memory block for image rendering. 

This memory block has read-only access for the compositor. 

Synchronization between applications and compositor is 

provided by queuing messages transmitted between partitions via 

special communication channels. Two channels are used 

between each application and the compositor. First channel is 

used by application to inform the compositor that image is ready 

to display. The second channel is used by the compositor to 

inform the application that the image was displayed and the 

application can use the image buffer again. The application 

synchronization scheme can be represented by the algorithm 

shown in Fig. 4. 

 
Fig. 4. Application synchronization algorithm.  

Appropriately the processing by the compositor images 

rendered by applications can be represented by the following 

algorithm (Fig. 5): 

 
Fig. 5. Compositor synchronization algorithm.  

Let’s consider an example of the compositor work. Resultant 

image generated from buffers produced by two applications is 

presented in Fig. 6. 

 
Fig. 6. Composition of two application buffers. 

Two applications – the Primary Flight Display (PFD) on the 

left side of image and the Counter on its right side – work 

simultaneously (in fact in line due to the requirements of ARINC 

653) and images produced by applications are visualized by the 

compositor. Suggested approach works correctly but 

visualization speed in given example is insufficient for avionic 

applications. Both applications work with speed ~5 frames per 

second. There are several reasons for such behavior. First at all 

the typical avionic processor PowerPC [6] has low performance. 

The second reason is that all partitions work on a single processor 

core and have predetermined amount of time to access its 

resources. We can slightly optimize this time subdivision only 
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not_first = false; 

While (true) 

{ 

  If (not_first) 

  { 

    Wait the message that image was displayed  

} 

not_first = true; 

  Render image 

  Sent message that image is ready for display 

} 

for (int ic = 0; ic < application number; ic++) 

{ 

  Wait not more than 1 millisecond the message that the 

rendered image from ic-th application is ready to display 

  If the message came 

  { 

    Display image from the appropriate shared memory 

block by using frame buffer library 

    Send the message that image from the given application 

was displayed  

  } 

} 



taking into account real applications needs. In the given example 

the frame time was subdivided in the following manner: 

1. PFD – 45ms 

2. Counter – 15ms 

3. Compositor – 16ms 

This schedule provides more or less balanced access to the 

processor resources for applications with essentially different 

resource requirements.  

But future acceleration is possible by using of all processor 

cores only. Processor PowerPC (P3041) [6] used by us has four 

cores while perspective PowerPC (P4080) [7] can have eight 

cores. 

4. Multicore solution  

In case of multi core system JetOS supports ability to run 

multiple modules (instances of JetOS) on one device. These 

modules operate independently on different processor cores. This 

JetOS feature is called AMP – Asymmetric Multi-Processing. 

This AMP feature makes possible to use processor power in 

significantly more efficient way. Appropriate project 

configuration using AMP feature is called AMP project. AMP 

project supports shared memory blocks which we use for images 

passing between modules. But it does not provide currently 

queuing messages which we used for synchronization in solution 

via JetOS partitions. Due to this reason we decided to use small 

shared memory blocks for synchronization in multicore solution. 

As in the case of previous solution we need to support two events 

for synchronization of interaction of each application with the 

compositor: 

1. Start_copy – when the image is prepared by application and 

is ready for display by the compositor; 

2. End_copy – when the image was already displayed by the 

compositor and the appropriate memory block can be used 

again by application for rendering the next frame. 

 
Fig. 7. Event emulation 

This pair of events is implemented by using a 16-byte 

memory block shared between modules. The first half of this 

block is used for Start_copy event and the second half – for 

End_copy event. For convenience and a more intuitive interface 

we implemented the set of functions which emulates work with 

these memory blocks as with events (Fig. 7). As an argument all 

these functions use a pointer either to the first half or to the 

second half of the appropriate 16-byte shared memory block. 

To pass rendered image from application to the compositor 

each application uses memory block shared with the compositor. 

Now the work of the application can be represented by the 

following algorithm (Fig. 8): 

 
Fig. 8. AMP application algorithm. 

Appropriately the processing of images rendered by 

applications by the compositor can be described by the following 

algorithm (Fig. 9): 

 
Fig. 9. AMP compositor algorithm.  

At the initialization state all End_copy events are set to 

AMP_UP state while Start_copy are set to AMP_DOWN state.  

The proposed technology of using multi-core processor 

under JetOS allows to increase the speed of visualization for the 

example on Fig. 6 till 8.8 frames per second for PFD application 

and till 44 frames per second for Counter application. It should 

be noted that the rendering speed for application PFD is still 

insufficient. Even with one application running in the JetOS 

partition solution the rendering speed does not exceed 7.4 frames 

per second. When using multi-core technology the speed slightly 

increases due to the work of the frame buffer library in a separate 

core. Partially it is due to the fact that the PFD application is 

overcomplicated itself. Later this application is modified to 

increase its efficiency. 

 
Fig. 10a. Example of AMP solution for the compositor. 

Visualization of PFD + map + Counters. 

#define AMP_UP         1 

#define AMP_DOWN   0 

typedef int*  AMP_EVENT; 

/// Get event state. 

int AMP_GetEventState(AMP_EVENT ev) 

{ 

  return ev[0]; 

} 

/// Set the event in the  state "up". 

void AMP_SetEvent(AMP_EVENT ev) 

{ 

  ev[0] = AMP_UP; 

} 

/// Set the event in the  state "down". 

void AMP_ResetEvent(AMP_EVENT ev) 

{ 

  ev[0] = AMP_DOWN; 

} 

/// Infinitely wait while event is in state "down". 

void AMP_WaitEvent(AMP_EVENT ev) 

{ 

  RETURN_CODE_TYPE ret; 

  while (ev[0] == AMP_DOWN) 

  { 

    TIMED_WAIT(MILLISECOND, &ret); 

  } 

While (true) 

{ 

AMP_WaitEvent(End_copy); 

AMP_ResetEvent(End_copy); 

Render image 

AMP_SetEvent(Start_copy); 

} 

for (int ic = 0; ic < application number; ic++) 

{ 

  If (AMP_GetEventState(Start_copy[ic]) = AMP_UP) 

  { 

     AMP_ResetEvent (Start_copy[ic]); 

     Display image from the appropriate shared memory 

block by using frame buffer library 

     AMP_SetEvent(End_copy[ic]); 

  } 

} 



 
Fig. 10b. Example of AMP solution for the compositor. 

Visualization of PFD + relief. 

 
Fig. 10c. Example of AMP solution for the compositor. 

Visualization of PFD + state of doors. 

 
Fig. 10d. Example of AMP solution for the compositor. 

Visualization of PFD + navigation display. 

Additional examples of images produced by suggested multi 

window approach are shown in Fig. 10. The following rendering 

speed was reached for these examples: 

 

Fig. 10a:  

PFD – 16 frames per second 

Map – 16 frames per second 

Counter – 16 frames per second 

 

Fig. 10b: 

PFD – 16 frames per second 

Relief – 9.2 frames per second 

 

Fig. 10c: 

PFD – 10.3 frames per second 

State of doors – 21.7 frames per second 

 

Fig. 10d: 

PFD – 10.3 frames per second 

Navigation display - 21 frames per second 

5. Conclusion 

Analysis of visualization algorithms for various data used in 

embedded avionics systems shows that JetOS partitioning 

services alone do not secure the required performance. The use 

of extensions for work in multi-core systems provided by JetOS 

improves the performance. However, the rendering speed is still 

not sufficient in some cases. In order to further increase 

performance the possibility of using multi-core processor options 

directly in the OpenGL SC library should be considered. 
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