
Restricted Extensions for GPU Photo-realistic Renderer
V.V. Sanzharov1, V.A. Frolov2,3, I.V. Pavlov3

vsan@protonmail.com|vova@frolov.pp.ru|ipa4lov@gmail.com
1Gubkin Russian State University of Oil and Gas, Moscow, Russia;
2Keldysh Institute of Applied Mathematics RAS, Moscow, Russia;

3Moscow State University, Moscow, Russia

Photo-realistic rendering systems on CPU traditionally have significant flexibility achieved mainly by the
ability for end user to write custom plugins or shaders. The same cannot be said about majority of photo-realistic
GPU renderers. Most «classic» approaches to design of user-extendable software on CPU, such as object-oriented
plugins are not very well suited for GPU programming. In this paper we propose a restricted approach to developing
extendable GPU rendering system at low development cost. Our hardware agnostic light-weight approach can be
applied to existing rendering systems with minimal changes to them. We apply our approach to the problem of
procedural textures implementation and show that, in addition to simplicity, our approach is faster then existing
GPU solutions.

Keywords: photo-realistic rendering, ray tracing, GPU, procedural textures

1. Introduction

Modern photo-realistic rendering systems are mov-ing
towards GPU implementation with many strong players
actively developing GPU versions of their products
[19]. This tendency is becoming even more
pronounced with the advent of hardware accelerated ray
tracing technology (i.e. Nvidia RTX) which is
available to general public. However, for a long time
industry (such as visual effects, animated films, archi-
tectural visualization and others) used CPU renderers
which are known for their flexibility and extensibility.
By these terms we mean the ability given to the end-
user of the rendering system to easily add new features
such as procedural shading, texturing, custom BSDF or
light source models.

1.1 Related work

1.1.1 Plugins

One of the most powerful traditional approaches is
object-oriented plugins [14, 18]. This approach is
highly flexible, however it has well-known drawbacks
and limitations. One of the most serious problems —
inability to use hardware at full speed due to encapsu-
lation [1]. For example, SIMD will require to change
interface and even then, we have to sacrifice portabil-ity.
Although the object-oriented approach is possi-ble on
the GPU, its efficiency is extremely low due to GPUs
are not designed for dynamic-dispatching code [2].
Another problem is the actual limited flexibility of the
interfaces: it is impossible to create an interface that
will satisfy all users in the future. Thus, Do-main
Specific Languages (DSL) is the more powerful
approach.

1.1.2 Domain Specific Languages

One of the first methods to formulate custom shading
operations was «shading trees» [3] - directed acyclic
graphs with input values in leafs, operations

(such as addition and multiplication) in nodes and
final value in the root. Different materials, lights, at-
mospheric effects are formulated with different trees
which are combined by a specific procedure by ren-
dering system. Such trees can’t specify loops or con-
ditional execution. In pixel stream editor proposed in
[13], custom procedure is executed on every pixel us-
ing some arbitrary per-pixel data as input. These two
approaches served as a basis for RSL. In RSL there are
shaders of different types (light, surface, volume, etc.),
which are called by the rendering system. Computa-
tions can be executed with different rates — per-batch
and per-sample.

One of the first shading languages - RSL (Render-
Man Shading Language) was developed as a part of
RenderMan [7] and more modern Open Shading Lan-
guage (OSL) [27] was initially developed for Arnold
renderer. Both of these rendering systems are cur-
rently CPU based, although GPU version of Arnold is
in development. Open Shading Language (OSL)[27]
was specifically designed for ray-tracing based al-
gorithms. It uses LLVM framework and just in time
(JIT) compilation. The shaders are first compiled to
bytecode and then translated into x86/x64 instruc-
tions. Approaches based on full-fledged compilers are
certainly the most powerful and flexible. Their main
disadvantages are high complexity, high development
cost and obstructed debugging. In any case, exist-ing
solutions uses CPU: RSL [7], OSL [27], VEX [22] and
other [4]. Although, Octane GPU renderer im-
plements a subset of OSL for procedural textures [26].

GPU programming enforces more restrictions and is
more difficult in general, so it is hard to design
comparable flexible solution with efficient GPU imple-
mentation which will preserve high performance. In
real-time graphics applications the difficulty is miti-
gated by the fact that there exists standardized graph-ics
pipeline with known stages. In ray tracing sim-ilar
«pipeline-like» approach was adapted in OptiX [11],
RTX [25] and OpenRL [21]. However, it requires the
whole rendering system infrastructure to be im-

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

plemented using these technologies which are limited to
specific hardware. Running ahead, our approach is
hardware-agnostic.

There are several well-known hardware-accelerated
shading languages: GLSL, HLSL, Cg, Metal. There
are approaches that propose new languages compiled to
one or several hardware shading languages such as [15]
to improve portability across different rendering
engines. In [8] authors propose approach to building
shaders from modular components written in a do-
main specific language. In shading language proposed in
[6] shaders are mapped to more than one graph-ics
pipeline stage and implement the concept of in-
heritance from object-oriented programming to make
shaders easily extendable and reusable.

In [10] a framework suitable for creation of cus-
tom shader pipelines is proposed. These pipelines are
mapped to a series of kernels which are then sched-
uled for sequential execution. Pipelines can target
different hardware such as GPUs or multi-core CPUs.
Authors demonstrate application to rasterization and
Reyes pipelines. Authors in [12] propose Ray Tracing
Shading Language (RTSL) which is based on GLSL
and to some extent on RSL. RTSL was developed
with CPU rendering systems in mind and makes use of
SIMD extensions and packet tracing.

Another solution is OptiX ray-tracing engine by
Nvidia [11]. It provides the user with the ability to
create programs of different types - an approach simi-lar
to conventional graphics APIs. OptiX can be hard-ware
accelerated on Nvidia Turing hardware [24] by the
means of RTX technology. RTX is also available in the
other graphics APIs (DirectX and Vulkan) and an
approach largely similar to OptiX can be used with these
APIs instead [25]. Caustic Graphics OpenRL [21] was
the earlier technological analog of same ideas with
hardware acceleration which did not reach mass product
scale.

1.1.3 Disadvantages of existing GPU approaches

OptiX [11] utilizes mega-kernel execution model
where user programs are linked together into a mono-
lithic kernel. It behaves like a state machine where
the state identifier selects what program should be
executed next with some optimizations to reduce reg-
ister pressure (by using same register set for differ-
ent stages). This approach is considered ineffective
because of several reasons [9], [5]. First, it uses sin-
gle, maximum register number for of all programs and
some states degrade performance of others in this way.
Second, it is complex to profile and has unstable per-
formance. Finally, high branch divergence between
states can significantly degrade performance. To be
fair, it should be said that this approach still has ad-
vantages. First, no overhead for launching kernels
(which presents in other approaches) because all code is
merged into a single kernel. Second, this approach

allows recursion support, function calls and exceptions
[11].

An alternative to mega-kernel is simple divide and
conquer strategy, called separate-kernel [5]. This ap-
proach avoids high register pressure via manual split-
ting of code in to several kernels. Unfortunately, it
can’t help with extension of renderer with custom user
programs by itself because separate-kernel is manual
optimization by it’s definition.

In [9] wavefront pathtracing was suggested. The
idea of wavefront pathtracing is to push and exe-
cute different stages of mega-kernel state machine in
separate GPU queues. Wavefront pathtracing solves
both branch divergence and register pressure problem as
different programs are actually executed in sepa-rate
kernels. This is true for both user and render-system
defined programs, thus, ray-sorting/thread-sorting
approaches are enabled here. Wavefront ap-proach
also has limited support for recursion as it can be
thought of as breadth-first search in tree. It seems that
Nvidia RTX partially uses this approach (at least for
ray-scene intersection). Unfortunately wavefront
pathtracing also has disadvantages. First, it has
unpredictable memory footprint and kernel ex-ecution
overhead in general. This is mainly because each «call
of a function» that actually executes in sep-arate queue
must perform at least several operations:(1) append all
arguments of «a function» to global memory, (2) save
the whole current state of execut-ing program in global
memory, (3) read current state of executing program
from global memory (with the returned result) and
continue executing when child queue of «a function»
will be completed. With the addition of recursion this
approach quickly becomes memory-hungry due to high
breadth-first search cost combined with large amount of
threads (100K–1M). Second, wavefront approach has
limited ability to par-allelize computations because user-
defined procedures are not guaranteed to create work
in parallel. And usually they do not. Imagine a
common case of shoot-ing several rays in RTX samples
via loop that leaves no other choice for implementation
other than to pro-cess all rays in groups for the first
iteration, second and subsequent iteration of loop. Such
approach sim-plifies things for user but limits efficiency.

Thus, mega-kernel is more natural for CPU and
wavefront approach is better for GPUs. Neverthe-
less, both mega-kernel and wavefront methods have
enormous implementation cost, huge complexity and
obstructed debugging for end-user as the final gener-
ated code and execution model are greatly different
from original input code. This approach is suitable
for large companies that heavily invest in compilers
and hardware.

1.1.4 Closest analogues

 When using existing solutions small development
teams become dependent on hardware and lose the

portability of their products. At the same time they
have no resources for supporting their own compilers
and thus often prefer not to use these technologies at
all [20, 26]. Both Cycles [20] (open source) and
Octane[26] (commercial) restrict their programmabil-ity
to procedural textures. Shaders can evaluate input
parameters for material and light models, but can not
change these models.

There are several reasons for such decision. First,
programming/extending things like material or light
source models is too hard for end-user. This is mainly
due to the fact that modern rendering systems use
advanced light transport algorithms with multiple im-
portance sampling and each material and light should be
able to not only generate samples but also calcu-late
their probability density (both forward and re-verse if
BPT[17] is used for example) which is a quite tricky
task — correctness of light integration could be easily
broken by the user. Second, excessive exten-sibility
leads to re-compilation for the whole system every
time (OptiX approach) and can be too long and
inconvenient for the end-user. Thus «shading trees»
approach is still widely used for extending materials.
Moreover, shading trees are convenient for artists who
use visual programming approach via some GUI to
simply «draw» them.

Cycles approach is mature but has disadvantages.
Cycles transforms acyclic shader graph directly to
GLSL code which is further compiled in to a kernel.
It’s first disadvantage is that the actual argument val-ues
mapping is produced during the code generation
process. So, the input values are placed in GLSL code as
constants and if some procedural textures are used twice
with different argument values Cycles will dupli-cate
calls (which will definitely lead to branch diver-gence
for different rays executing same texture with different
parameters). Apart from the fact that the effectiveness
of such a decision is questionable, any change in the
parameters of procedural textures will lead to a
recompilation of the final texture kernel each render
launch. Second, Cycles does not allow to add new
basic nodes «on the fly». It requires that all ba-sic
nodes to be described in a single place and to be free
of name conflicts. Adding new basic node leads to the
whole system (Cycles) recompilation. Finally, generated
code is complex for debugging (in any way) due to
aggressive code generation.

2. Proposed solution

Our render system is designed in separate-kernel
approach [5] (fig. 1). In analogue to Cycles we allow for
programmable procedural textures only to restrict
complexity and preserve performance for «fixed» func-
tionality of the system. This way we achieve true modular
architecture where it’s easy to change the particular part
of ray tracing algorithm (for example acceleration
structure traversal or BRDF evaluation) without affecting
the others.

Fig. 1. Our architecture. Generated kernel is shown with
an arrow. Users do not write this kernel directly. Kernel is

generated in a certain way from a set of user defined
procedures.

It is also easy to add new functionality by intro-
ducing new kernel as additional computational step.
This is the way we implement procedural textures —we
add new kernel which executes procedural texture code
on hit and writes the results into the global mem-ory,
other stages are not affected. With this approach the task
of integrating procedural textures code sub-mitted by
the end-user into the renderer is reduced to
development of some mechanism to properly «in-sert»
it into procedural textures kernel (as in Cycles).
However, this is where our similarity ends.

Unlike Cycles we allocate a separate memory area
inside material buffer for storing argument values
there (fig. 2). We call this area «fake stack». The
code generator can think of this memory region as a
stack, placing arguments in it. But since all parame-ters
are constant, «fake stack» in fact is just a read-only
region of global memory. Thus, we can update this
region from the CPU side without kernel recom-
pilation. Besides, «fake stack» region is almost unlim-
ited in space so (unlike Cycles) we are not limited in
amount and size of arguments. Thus, the assignment of
the actual value of the argument occurs when the
texture is attached to the material.

Fig. 2. Material layout in memory. Blue and green
material pages (first three rectangles) represent different
BRDF nodes (of shader tree) that may reference different

regions of argument storage in the same buffer.

The next major difference of our approach and ex-
isting (at least Cycles) is nested procedural textures
processing. Existing approaches usually just inline
code of child textures in to the parent. This approach
works well if one construct the final nested texture
from a large number of small base nodes. However
for heavy nodes (like Perlin or other noises which are
quite common for procedural textures) this leads to
excessive waste of registers due to heavy code dupli-
cated several times.

Our solution comes from assumption that basic
building blocks (defined by user) are heavy enough in
their majority. For such case it is more efficient to
process them in the same way as interpreter does (fig.
3). This can be thought of as a restricted mega-kernel
approach. We allocate small stack inside kernel and use
DFS traversal of texture graph to get topo-logical
order. This would help us to ensure that all
parameters needed for this function call have already
been calculated before the call. Results of intermedi-ate
calls are also stored on stack because they could be
used as a parameters in next function calls.

Fig. 3. Interpreter of nested textures. A restricted mega-
kernel approach

At last, we implement some custom features like
ambient occlusion (AO) in «fixed function» by intro-
ducing new kernel that computes all AO rays in
parallel. This gains us additional performance over
naive approach (table 1).

2.1 Implementation details
We provide possibility to end-users to write their

own custom procedural textures in OpenCL C99. To
resolve name conflicts on different procedural textures
we transform function names using Clang LibTool-
ing. It provides possibility to build AST for OpenCL
source code and then modify original source code us-
ing this tree. We add unique prefixes to all user func-
tions calls, definitions and declarations according to

the actual texture ids. We also used Clang to replace
«embedded calls» and «embedded types» that allow
procedural texture to read surface attributes («rea-
dAttr»), global engine settings and sampling from 2D
images («tex2D») inside user code:

float3 pos = readAttr("WorldPos");
float3 norm = readAttr("Normal");
float3 tang = readAttr("Tangent");

This approach separates implementation details
from user and allow us to silently change implemen-
tation in future. Using Clang for code instrumenta-tion
allows us to not agree with the user in detail about
some kind of concrete interface. We intention-ally
didn’t use any new syntax so that the input user code is
still 100% C99 code. In this way it can be eas-ily
integrated with separate C/C++ application for
debugging/testing or any other purpose. Example of
simple user procedural texture which multiplies colors of
2 different images:

float4 userProc(sam2D tex1, sam2D tex2)
{

float2 texCoord = readAttr("TexCoord0");
float4 texColor1 = tex2D(tex1, texCoord);
float4 texColor2 = tex2D(tex2, texCoord);
return texColor1*texColor2;

}

It should be mentioned that unlike existing ap-
proaches, our instrumentation changes code only
slightly. This way it is possible to look at the gen-
erated kernel, directly modify and debug it the same
way as any other OpenCL kernel. This is essentially
different from Cycles approach. Also, it is possible to
use the proposed approach to implement other exten-
sions (not just procedural textures) to the rendering
system such as procedural geometry.

2.2 Comparison
We compared our approach with RTX-based path

tracer implemented in Vulkan API and simulated Cy-cles
approach — we inserted all constants and textures directly
in code of a single procedural textures to sim-ulate
Cycles. As our test scenario we used Sponza scene
with inserted 3d model. First we rendered the scene
with simple diffuse light gray material on the model
(produced images were substantially identical) and then
changed material to use procedural texture (fig. 4). We
measured the drop in performance to see how well
relatively heavy computations in shading will be handled.
Procedural rust is a blend between two materials -
simple diffuse gray and the base rust mate-rial. The base
rust material is based on noise functions and color ramps
(fig. 5). The mask for blending in addition to noise
functions also uses ambient occlu-sion. Scratches
material is based on noise functions and voronoi
pattern (fig. 6). Comparison results are shown in
(tab.1).

Fig. 4. Scene with simple diffuse material on 3d model (left) and procedural texture (right).

Fig. 5. Example of rust procedural texture applied to a model close-up (left) and shader node tree in Blender (right,
some nodes are actually collapsed parts of the tree). Note, that different model and base material (with reflective

component) are used here for the sake of image clarity.

Fig. 6. Example of scratches procedural texture applied to a model close-up (left) and shader node tree in Blender
(right, leftmost node is actually a collapsed part of the tree). Note, that different model and base material (with reflective

component) are used here for the sake of image clarity.

procedural texture Cycles sim. RTX Ours
rust (time) +46% +33% +21%

scratches (time) +9% +4% +15%
rust (stack frame) 604 bytes unknown 464 bytes

scratches (stack frame) 412 bytes unknown 336 bytes

Table 1. Rendering time increase with proc. texture
compared to simple diffuse material and stack frame size
obtained with ''-cl-nv-verbose'' key for OpenCL compiler.

In this way (table 1) using restricted mega-kernel
we outperform Cycles approach for complex proce-
dural textures (with ambient occlusion rays) in both
speed and stack-frame size but have little loss of speed
for simpler texture (scratches). We also beat RTX im-
plementation for rust because proposed implementa-tion
processes ambient occlusion rays in parallel while both
RTX and Cycles are limited to tracing one ray at a time
for each thread. In comparison with Cycles ap-proach
we have smaller stack frame size for both tex-tures.
This demonstrates that restricted mega-kernel approach
performs its functions.

3. Acknowledgments

This work was sponsored by RFBR 18-31-20032
grant.

4. References

[1] Albrecht T. Pitfalls of Object Oriented Programming.
Sony Computer Entertainment Europe Research and
Development Division archives. 2013.

[2] Barik R. et al. Efficient mapping of irregular C++
applications to integrated GPUs //IEEE/ACM Inter-
national Symposium on Code Generation and Opti-
mization. – ACM, 2014. – p. 33.

[3] Cook R. L. Shade trees //ACM Siggraph Computer
Graphics. – 1984. – Vol. 18. – №. 3. – p. 223-231.

[4] Deryabin N. B., Zhdanov D. D., Sokolov V. G. Em-
bedding the script language into optical simulation soft-
ware // Programming and Computer Software. 2017,
Vol. 43, №1, pp 13–23.

[5] Frolov V., Kharlamov A., Ignatenko A. Biased Global
Illumination via Irradiance Caching and Adaptive Path
Tracing on GPUs. GraphiCon’2010, p. 49-56.

[6] Foley T., Hanrahan P. Spark: modular, composable
shaders for graphics hardware. – ACM, 2011. – Vol.
30. – №. 4. – p. 107.

[7] Hanrahan P., Lawson J. A language for shading and
lighting calculations //ACM SIGGRAPH. – ACM,
1990. – �. 24. – №. 4. – p. 289-298.

[8] He Y. et al. Shader components: modular and high per-
formance shader development //ACM Transactions on
Graphics. – 2017. – Vol. 36. – №. 4. – p. 100.

[9] Laine S., Karras T., Aila T. Megakernels considered
harmful: wavefront path tracing on GPUs //HPG’13.
– ACM, 2013. – �. 137-143.

[10] Patney A. et al. Piko: a framework for authoring pro-
grammable graphics pipelines //ACM Transactions on
Graphics. – 2015. – �. 34. – №. 4. – p. 147.

[11] Parker S. G. et al. GPU ray tracing //Communica-
tions of the ACM. – 2013. – Vol. 56. – №. 5. – p.
93-101.

[12] Parker S. G. et al. RTSL: a ray tracing shading lan-
guage //2007 IEEE Symposium on Interactive Ray
Tracing. – IEEE, 2007. – p. 149-160.

[13] Perlin K. An image synthesizer //ACM Siggraph. –
1985. – �. 19. – №. 3. – p. 287-296.

[14] Pharr M., Jakob W., Humphreys G. Physically based
rendering: From theory to implementation. – Morgan
Kaufmann, 2016.

[15] Sons K. et al. shade.js: Adaptive Material Descrip-
tions //Computer Graphics Forum. – 2014. – Vol. 33.
– №. 7. – p. 51-60.

[16] Stich M. Real-time raytracing with Nvidia RTX, GTC
EU 2018

[17] Veach E. Robust Monte Carlo methods for light trans-
port simulation. – PhD thesis : Stanford University,
1997. – �. 1610.

[18] Zhdanov D. D., Ershov S.V., Deryabin N. B. Object-
oriented model of photo-realistic visualization of com-
plex scenes // Scientific visualization (in russian),
Vol.5, № 4, 2013, pp. 88–117.

[19] Arnold renderer GPU demo press release. URL =
https://www.arnoldrenderer.com/news/press-release-
arnold-5-3-gpu/

[20] Blender community. Cycles Open Source Production
Rendering. URL = https://www.cycles-renderer.org/

[21] Caustic Graphics. OpenRL: Open Ray Tracing Lan-
guage. 2010.

[22] Houdini 17.5 VEX language reference. 2019. URL =
https://www.sidefx.com/docs/houdini/vex/lang.html

[23] Hydra Renderer. Open source rendering
system. KIAM RAS, MSU. 2019 URL =
https://github.com/Ray-Tracing-Systems/HydraAPI

[24] Nvidia Turing arch. paper. 2019 URL
= http://www.nvidia.com/content/dam/en-
zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-
Whitepaper.pdf

[25] Nvidia RTX Ray tracing developer resources. 2019
URL = https://developer.nvidia.com/rtx/raytracing

[26] OctaneRender OSL Documentation. 2019. URL =
https://docs.otoy.com/osl/

[27] Open Shading Language. 2019. URL =
https://github.com/imageworks/OpenShadingLanguage

[28] Vulkan specification. 2019 URL =
https://www.khronos.org/registry/vulkan/specs/1.1-
extensions/html/vkspec.html

