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Photo-realistic rendering systems on CPU traditionally have significant flexibility achieved mainly by the 
ability for end user to write custom plugins or shaders. The same cannot be said about majority of photo-realistic 
GPU renderers. Most «classic» approaches to design of user-extendable software on CPU, such as object-oriented 
plugins are not very well suited for GPU programming. In this paper we propose a restricted approach to developing 
extendable GPU rendering system at low development cost. Our hardware agnostic light-weight approach can be 
applied to existing rendering systems with minimal changes to them. We apply our approach to the problem of 
procedural textures implementation and show that, in addition to simplicity, our approach is faster then existing 
GPU solutions.
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1. Introduction

Modern photo-realistic rendering systems are mov-ing 
towards GPU implementation with many strong players 
actively developing GPU versions of their products 
[19]. This tendency is becoming even more 
pronounced with the advent of hardware accelerated ray 
tracing technology (i.e. Nvidia RTX) which is 
available to general public. However, for a long time 
industry (such as visual effects, animated films, archi-
tectural visualization and others) used CPU renderers 
which are known for their flexibility and extensibility. 
By these terms we mean the ability given to the end-
user of the rendering system to easily add new features 
such as procedural shading, texturing, custom BSDF or 
light source models.

1.1 Related work

1.1.1 Plugins

One of the most powerful traditional approaches is 
object-oriented plugins [14, 18]. This approach is 
highly flexible, however it has well-known drawbacks 
and limitations. One of the most serious problems —
inability to use hardware at full speed due to encapsu-
lation [1]. For example, SIMD will require to change 
interface and even then, we have to sacrifice portabil-ity. 
Although the object-oriented approach is possi-ble on 
the GPU, its efficiency is extremely low due to GPUs 
are not designed for dynamic-dispatching code [2]. 
Another problem is the actual limited flexibility of the 
interfaces: it is impossible to create an interface that 
will satisfy all users in the future. Thus, Do-main 
Specific Languages (DSL) is the more powerful 
approach.

1.1.2 Domain Specific Languages

One of the first methods to formulate custom shading 
operations was «shading trees» [3] - directed acyclic 
graphs with input values in leafs, operations

(such as addition and multiplication) in nodes and 
final value in the root. Different materials, lights, at-
mospheric effects are formulated with different trees 
which are combined by a specific procedure by ren-
dering system. Such trees can’t specify loops or con-
ditional execution. In pixel stream editor proposed in 
[13], custom procedure is executed on every pixel us-
ing some arbitrary per-pixel data as input. These two 
approaches served as a basis for RSL. In RSL there are 
shaders of different types (light, surface, volume, etc.), 
which are called by the rendering system. Computa-
tions can be executed with different rates — per-batch 
and per-sample.

One of the first shading languages - RSL (Render-
Man Shading Language) was developed as a part of 
RenderMan [7] and more modern Open Shading Lan-
guage (OSL) [27] was initially developed for Arnold 
renderer. Both of these rendering systems are cur-
rently CPU based, although GPU version of Arnold is 
in development. Open Shading Language (OSL)[27] 
was specifically designed for ray-tracing based al-
gorithms. It uses LLVM framework and just in time 
(JIT) compilation. The shaders are first compiled to 
bytecode and then translated into x86/x64 instruc-
tions. Approaches based on full-fledged compilers are 
certainly the most powerful and flexible. Their main 
disadvantages are high complexity, high development 
cost and obstructed debugging. In any case, exist-ing 
solutions uses CPU: RSL [7], OSL [27], VEX [22] and 
other [4]. Although, Octane GPU renderer im-
plements a subset of OSL for procedural textures [26].

GPU programming enforces more restrictions and is 
more difficult in general, so it is hard to design 
comparable flexible solution with efficient GPU imple-
mentation which will preserve high performance. In 
real-time graphics applications the difficulty is miti-
gated by the fact that there exists standardized graph-ics 
pipeline with known stages. In ray tracing sim-ilar 
«pipeline-like» approach was adapted in OptiX [11], 
RTX [25] and OpenRL [21]. However, it requires the 
whole rendering system infrastructure to be im-
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plemented using these technologies which are limited to 
specific hardware. Running ahead, our approach is 
hardware-agnostic.

There are several well-known hardware-accelerated 
shading languages: GLSL, HLSL, Cg, Metal. There 
are approaches that propose new languages compiled to 
one or several hardware shading languages such as [15] 
to improve portability across different rendering 
engines. In [8] authors propose approach to building 
shaders from modular components written in a do-
main specific language. In shading language proposed in 
[6] shaders are mapped to more than one graph-ics 
pipeline stage and implement the concept of in-
heritance from object-oriented programming to make 
shaders easily extendable and reusable.

In [10] a framework suitable for creation of cus-
tom shader pipelines is proposed. These pipelines are 
mapped to a series of kernels which are then sched-
uled for sequential execution. Pipelines can target 
different hardware such as GPUs or multi-core CPUs. 
Authors demonstrate application to rasterization and 
Reyes pipelines. Authors in [12] propose Ray Tracing 
Shading Language (RTSL) which is based on GLSL 
and to some extent on RSL. RTSL was developed 
with CPU rendering systems in mind and makes use of 
SIMD extensions and packet tracing.

Another solution is OptiX ray-tracing engine by 
Nvidia [11]. It provides the user with the ability to 
create programs of different types - an approach simi-lar 
to conventional graphics APIs. OptiX can be hard-ware 
accelerated on Nvidia Turing hardware [24] by the 
means of RTX technology. RTX is also available in the 
other graphics APIs (DirectX and Vulkan) and an 
approach largely similar to OptiX can be used with these 
APIs instead [25]. Caustic Graphics OpenRL [21] was 
the earlier technological analog of same ideas with 
hardware acceleration which did not reach mass product 
scale.

1.1.3 Disadvantages of existing GPU approaches

OptiX [11] utilizes mega-kernel execution model 
where user programs are linked together into a mono-
lithic kernel. It behaves like a state machine where 
the state identifier selects what program should be 
executed next with some optimizations to reduce reg-
ister pressure (by using same register set for differ-
ent stages). This approach is considered ineffective 
because of several reasons [9], [5]. First, it uses sin-
gle, maximum register number for of all programs and 
some states degrade performance of others in this way. 
Second, it is complex to profile and has unstable per-
formance. Finally, high branch divergence between 
states can significantly degrade performance. To be 
fair, it should be said that this approach still has ad-
vantages. First, no overhead for launching kernels 
(which presents in other approaches) because all code is 
merged into a single kernel. Second, this approach

allows recursion support, function calls and exceptions 
[11].

An alternative to mega-kernel is simple divide and 
conquer strategy, called separate-kernel [5]. This ap-
proach avoids high register pressure via manual split-
ting of code in to several kernels. Unfortunately, it 
can’t help with extension of renderer with custom user 
programs by itself because separate-kernel is manual 
optimization by it’s definition.

In [9] wavefront pathtracing was suggested. The 
idea of wavefront pathtracing is to push and exe-
cute different stages of mega-kernel state machine in 
separate GPU queues. Wavefront pathtracing solves 
both branch divergence and register pressure problem as 
different programs are actually executed in sepa-rate 
kernels. This is true for both user and render-system 
defined programs, thus, ray-sorting/thread-sorting 
approaches are enabled here. Wavefront ap-proach 
also has limited support for recursion as it can be 
thought of as breadth-first search in tree. It seems that 
Nvidia RTX partially uses this approach (at least for 
ray-scene intersection). Unfortunately wavefront 
pathtracing also has disadvantages. First, it has 
unpredictable memory footprint and kernel ex-ecution 
overhead in general. This is mainly because each «call 
of a function» that actually executes in sep-arate queue 
must perform at least several operations:(1) append all 
arguments of «a function» to global memory, (2) save 
the whole current state of execut-ing program in global 
memory, (3) read current state of executing program 
from global memory (with the returned result) and 
continue executing when child queue of «a function» 
will be completed. With the addition of recursion this 
approach quickly becomes memory-hungry due to high 
breadth-first search cost combined with large amount of 
threads (100K–1M). Second, wavefront approach has 
limited ability to par-allelize computations because user-
defined procedures are not guaranteed to create work 
in parallel. And usually they do not. Imagine a 
common case of shoot-ing several rays in RTX samples 
via loop that leaves no other choice for implementation 
other than to pro-cess all rays in groups for the first 
iteration, second and subsequent iteration of loop. Such 
approach sim-plifies things for user but limits efficiency.

Thus, mega-kernel is more natural for CPU and 
wavefront approach is better for GPUs. Neverthe-
less, both mega-kernel and wavefront methods have 
enormous implementation cost, huge complexity and 
obstructed debugging for end-user as the final gener-
ated code and execution model are greatly different 
from original input code. This approach is suitable 
for large companies that heavily invest in compilers 
and hardware.

1.1.4 Closest analogues

    When using existing solutions small development 
teams become dependent on hardware and lose the 



portability of their products. At the same time they 
have no resources for supporting their own compilers 
and thus often prefer not to use these technologies at 
all [20, 26]. Both Cycles [20] (open source) and 
Octane[26] (commercial) restrict their programmabil-ity 
to procedural textures. Shaders can evaluate input 
parameters for material and light models, but can not 
change these models.

There are several reasons for such decision. First, 
programming/extending things like material or light 
source models is too hard for end-user. This is mainly 
due to the fact that modern rendering systems use 
advanced light transport algorithms with multiple im-
portance sampling and each material and light should be 
able to not only generate samples but also calcu-late 
their probability density (both forward and re-verse if 
BPT[17] is used for example) which is a quite tricky 
task — correctness of light integration could be easily 
broken by the user. Second, excessive exten-sibility 
leads to re-compilation for the whole system every 
time (OptiX approach) and can be too long and 
inconvenient for the end-user. Thus «shading trees» 
approach is still widely used for extending materials. 
Moreover, shading trees are convenient for artists who 
use visual programming approach via some GUI to 
simply «draw» them.

Cycles approach is mature but has disadvantages. 
Cycles transforms acyclic shader graph directly to 
GLSL code which is further compiled in to a kernel. 
It’s first disadvantage is that the actual argument val-ues 
mapping is produced during the code generation 
process. So, the input values are placed in GLSL code as 
constants and if some procedural textures are used twice 
with different argument values Cycles will dupli-cate 
calls (which will definitely lead to branch diver-gence 
for different rays executing same texture with different 
parameters). Apart from the fact that the effectiveness 
of such a decision is questionable, any change in the 
parameters of procedural textures will lead to a 
recompilation of the final texture kernel each render 
launch. Second, Cycles does not allow to add new 
basic nodes «on the fly». It requires that all ba-sic 
nodes to be described in a single place and to be free 
of name conflicts. Adding new basic node leads to the 
whole system (Cycles) recompilation. Finally, generated 
code is complex for debugging (in any way) due to 
aggressive code generation.

2. Proposed solution

Our render system is designed in separate-kernel 
approach [5] (fig. 1). In analogue to Cycles we allow for 
programmable procedural textures only to restrict 
complexity and preserve performance for «fixed» func-
tionality of the system. This way we achieve true modular 
architecture where it’s easy to change the particular part 
of ray tracing algorithm (for example acceleration 
structure traversal or BRDF evaluation) without affecting 
the others.

Fig. 1. Our architecture. Generated kernel is shown with 
an arrow. Users do not write this kernel directly. Kernel is 

generated in a certain way from a set of user defined 
procedures.

It is also easy to add new functionality by intro-
ducing new kernel as additional computational step. 
This is the way we implement procedural textures —we 
add new kernel which executes procedural texture code 
on hit and writes the results into the global mem-ory, 
other stages are not affected. With this approach the task 
of integrating procedural textures code sub-mitted by 
the end-user into the renderer is reduced to 
development of some mechanism to properly «in-sert» 
it into procedural textures kernel (as in Cycles). 
However, this is where our similarity ends.

Unlike Cycles we allocate a separate memory area 
inside material buffer for storing argument values 
there (fig. 2). We call this area «fake stack». The 
code generator can think of this memory region as a 
stack, placing arguments in it. But since all parame-ters 
are constant, «fake stack» in fact is just a read-only 
region of global memory. Thus, we can update this 
region from the CPU side without kernel recom-
pilation. Besides, «fake stack» region is almost unlim-
ited in space so (unlike Cycles) we are not limited in 
amount and size of arguments. Thus, the assignment of 
the actual value of the argument occurs when the 
texture is attached to the material.

Fig. 2. Material layout in memory. Blue and green 
material pages (first three rectangles) represent different 
BRDF nodes (of shader tree) that may reference different 

regions of argument storage in the same buffer.



The next major difference of our approach and ex-
isting (at least Cycles) is nested procedural textures 
processing. Existing approaches usually just inline 
code of child textures in to the parent. This approach 
works well if one construct the final nested texture 
from a large number of small base nodes. However 
for heavy nodes (like Perlin or other noises which are 
quite common for procedural textures) this leads to 
excessive waste of registers due to heavy code dupli-
cated several times.

Our solution comes from assumption that basic 
building blocks (defined by user) are heavy enough in 
their majority. For such case it is more efficient to 
process them in the same way as interpreter does (fig. 
3). This can be thought of as a restricted mega-kernel 
approach. We allocate small stack inside kernel and use 
DFS traversal of texture graph to get topo-logical 
order. This would help us to ensure that all 
parameters needed for this function call have already 
been calculated before the call. Results of intermedi-ate 
calls are also stored on stack because they could be 
used as a parameters in next function calls.

Fig. 3. Interpreter of nested textures. A restricted mega-
kernel approach

At last, we implement some custom features like 
ambient occlusion (AO) in «fixed function» by intro-
ducing new kernel that computes all AO rays in 
parallel. This gains us additional performance over 
naive approach (table 1).

2.1 Implementation details
We provide possibility to end-users to write their 

own custom procedural textures in OpenCL C99. To 
resolve name conflicts on different procedural textures 
we transform function names using Clang LibTool-
ing. It provides possibility to build AST for OpenCL 
source code and then modify original source code us-
ing this tree. We add unique prefixes to all user func-
tions calls, definitions and declarations according to

the actual texture ids. We also used Clang to replace 
«embedded calls» and «embedded types» that allow 
procedural texture to read surface attributes («rea-
dAttr»), global engine settings and sampling from 2D 
images («tex2D») inside user code:

float3 pos = readAttr("WorldPos");
float3 norm = readAttr("Normal");
float3 tang = readAttr("Tangent");

This approach separates implementation details 
from user and allow us to silently change implemen-
tation in future. Using Clang for code instrumenta-tion 
allows us to not agree with the user in detail about 
some kind of concrete interface. We intention-ally 
didn’t use any new syntax so that the input user code is 
still 100% C99 code. In this way it can be eas-ily 
integrated with separate C/C++ application for 
debugging/testing or any other purpose. Example of 
simple user procedural texture which multiplies colors of 
2 different images:

float4 userProc(sam2D tex1, sam2D tex2)
{

float2 texCoord = readAttr("TexCoord0");
float4 texColor1 = tex2D(tex1, texCoord);
float4 texColor2 = tex2D(tex2, texCoord);
return texColor1*texColor2;

}

It should be mentioned that unlike existing ap-
proaches, our instrumentation changes code only 
slightly. This way it is possible to look at the gen-
erated kernel, directly modify and debug it the same 
way as any other OpenCL kernel. This is essentially 
different from Cycles approach. Also, it is possible to 
use the proposed approach to implement other exten-
sions (not just procedural textures) to the rendering 
system such as procedural geometry.

2.2 Comparison
We compared our approach with RTX-based path 

tracer implemented in Vulkan API and simulated Cy-cles 
approach — we inserted all constants and textures directly 
in code of a single procedural textures to sim-ulate 
Cycles. As our test scenario we used Sponza scene 
with inserted 3d model. First we rendered the scene 
with simple diffuse light gray material on the model 
(produced images were substantially identical) and then 
changed material to use procedural texture (fig. 4). We 
measured the drop in performance to see how well 
relatively heavy computations in shading will be handled. 
Procedural rust is a blend between two materials - 
simple diffuse gray and the base rust mate-rial. The base 
rust material is based on noise functions and color ramps 
(fig. 5). The mask for blending in addition to noise 
functions also uses ambient occlu-sion. Scratches 
material is based on noise functions and voronoi 
pattern (fig. 6). Comparison results are shown in 
(tab.1).



Fig. 4. Scene with simple diffuse material on 3d model (left) and procedural texture (right).

Fig. 5. Example of rust procedural texture applied to a model close-up (left) and shader node tree in Blender (right, 
some nodes are actually collapsed parts of the tree). Note, that different model and base material (with reflective 

component) are used here for the sake of image clarity.

Fig. 6. Example of scratches procedural texture applied to a model close-up (left) and shader node tree in Blender 
(right, leftmost node is actually a collapsed part of the tree). Note, that different model and base material (with reflective 

component) are used here for the sake of image clarity.



procedural texture Cycles sim. RTX Ours
rust (time) +46% +33% +21%

scratches (time) +9% +4% +15%
rust (stack frame) 604 bytes unknown 464 bytes

scratches (stack frame) 412 bytes unknown 336 bytes

Table 1. Rendering time increase with proc. texture 
compared to simple diffuse material and stack frame size 
obtained with ''-cl-nv-verbose'' key for OpenCL compiler.

In this way (table 1) using restricted mega-kernel 
we outperform Cycles approach for complex proce-
dural textures (with ambient occlusion rays) in both 
speed and stack-frame size but have little loss of speed 
for simpler texture (scratches). We also beat RTX im-
plementation for rust because proposed implementa-tion 
processes ambient occlusion rays in parallel while both 
RTX and Cycles are limited to tracing one ray at a time 
for each thread. In comparison with Cycles ap-proach 
we have smaller stack frame size for both tex-tures. 
This demonstrates that restricted mega-kernel approach 
performs its functions.
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