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Abstract

This paper presents an Imitation Learning (IL) based visual naviga-
tion system, which could guide the robots navigating from some start
position to a goal location without any explicit map. We pay close
attention to the safety issue due to partially-observability and data
distribution mismatching—when the robot meets some incomplete or
unfamiliar states, it probably performs an unsafe action, making it
hard to work on lifelong robot navigation. In this paper, a sequence-
to-sequence (Seq2seq) deep neural network is built to enhance the
agent’s context-awareness in partially-observable conditions and boost
the model’s adaptability to unseen scenarios. Additionally, we propose
Uncertainty-Aware Imitation Learning (UAIL) by explicitly estimating
model uncertainty and actively request experts for labeling samples
according to the uncertainty with On-Policy IL. Simulations demon-
strated that the combined method—Safety-Aware Imitation Learning
(SAIL) in goal-driven visual navigation achieves 35.6% shorter expected
moving steps and 22% fewer collisions compared with current counter-
parts. With the learned safer policy, SAIL had be successfully adapted
to unseen environments with minimal navigation performance loss.

1 Introduction

Considering a task of navigating from a current location to find a specific goal. Classical geometry-based methods,
such as Simultaneous Localization and Mapping (SLAM) [1], [2], [3], [4], [5] can be divided into two stages: one
stage is building a 3D map using imagery feature matching and geometry constraints, the other stage is global
or local path planning. SLAM-based approaches require carefully designed image features and are hard to work
on texture-less environments. Recently, learning-based approaches have dominated robot learning including
manipulation [21, 22], self-driving cars [10, 15, 16] and robot navigation [19, 20]. Compared with traditional
methods, learning-based navigation could work in an end-to-end fashion without any explicit map-building. One
framework for doing this is Reinforcement Learning (RL) [6, 7, 8, 9]. A reward function is usually given in RL,
then agents learn a policy to maximize the cumulative reward by interacting with the environment. However,
designing such an appropriate reward function in real-world scenarios is too difficult for humans. Moreover, the
sparse reward of RL in goal-driven task could lead to poor convergence and computation efficiency.
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Figure 1: End-to-end target driven navigation task, the goal is to learn a mapping from observation to action
which consumes minimum moving steps from a start position to the target location without any known map.

Alternatively, Imitation Learning (IL) [10, 11, 12] has been proposed to resolve reward-function-designing
issues in RL. Rather than designing such a reward function, IL could learn policies directly from observing
expert’s demonstrations and generalize to new situations without any explicit interaction with environments.
A common approach for IL is Behavior Cloning (BC) [13], where a robot observes a supervisor’s policy and
learns a mapping from states to actions directly with supervised learning. However, BC has a prerequisite that
demonstrations must meet the i.i.d assumption of statistical learning, or will suffer from several problems—with
the execution of the robot’s policy, robot’s state will move to a different distribution from teacher’s demonstration
which it was trained on, making it drift to dangerous states [14]. For instance, when a robot moving to a strange
state, collisions could easily happen. Moreover, the robot’s action estimation errors will compound once the
robot’s states drift away from the supervisor’s demonstrations. Therefore, the model is hard to be adapted to
context-changing environments, which prevents the application in life-long navigation. On-policy approach, such
as Data Aggregation [14], can partially alleviate this issue by querying corrective samples online and iteratively
aggregate new data for training. However, DAgger requires a huge number of queries to update its policy, which
could be tedious for human teachers to answer and add more unnecessary computations. Recent works have
paid more attention to safety issues in robot learning tasks, such as safe RL [43, 44, 45], but seldom consider
the IL’s safety in specific applications. In addition, the model’s adaptability toward unseen environments plays
a vital role in lifelong robot navigation, which should be explicitly modeled in the deep neural network of IL.

This paper presents Safety-Aware Imitation Learning (SAIL) framework by addressing both partially observ-
ability and data distribution mismatching in IL. Firstly, to enhance the context-awareness in partially observable
environments and facilitate the adaptability to unseen scenarios and goals, we build a sequence-to-sequence deep
neural network with Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). In this
network, both spatial relevance and temporal relevance are taken into consideration, which could significantly
enhance the agent’s context-awareness and improve the model’s generation performance toward unseen scenar-
ios and goals. Secondly, UAIL is proposed using Bayesian approximation with MC-Dropout [42]. For those
potentially uncertain or unsafe actions that occurred in some unseen or unfamiliar scenarios, rather than to
perform it anyway, UAIL request for expert’s advising (similar to active learning) for whether to act or label
it. We predict the model uncertainty with MC-Dropout, a Bayesian approximation for uncertainty estimation
in deep learning. This uncertainty has been used to improve the safety and efficiency of On-Policy Imitation
Learning such as DAgger. Extensive experiments in the simulator have been conducted to compare the combined
SAIL method with the vanilla IL approach, SAIL shows better navigation performance (35.6% fewer expected
moving steps) and safer policy (22% lower collision rates). Additionally, with the learned safer policy, SAIL had
shown successfully adapted to unseen scenarios and goals with minimal navigation performance loss. The main
contributions of our work are listed as followings:

(1) We built a Seq2seq deep neural network to enhance the agent’s context-awareness in partially-observable
scenarios and facilitate the model’s adaptability to unseen scenarios and goals.

(2) We presented Uncertainty-Aware Imitation Learning (UAIL) approach by estimating model uncertainty
with MC-Dropout and combining it with On-policy IL method, which significantly improves the safety of IL.

(3) We proposed SAIL by combining UAIL and the Seq2seq network and done extensive experiments and
evaluations, including navigation performance, safety, and the adaptability to unseen environments and goals.
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Figure 2: The proposed end-to-end, sequence-to-sequence neural network architecture for context-adaptive visual
navigation. 1) we model the spatial relevance between observation and goal with Siamese CNN Network. in
each time step, both of current observation and goal image are feed into the CNN network, where ResNet-50 are
used to extract the visual features of images. 2) we model the temporal relevance between current observations
and past observation it has seen before to address partially observability. GRU is used to maintain the hidden
representations of the input observations it has seen before.

In the following sections, related work is presented in Section II. Section III demonstrates the SAIL framework.
Experimental results are described in Section IV before making a conclusion in Section V.

2 Related Work

This work is relevant to past literature in the domains of imitation learning, learning-based navigation and
uncertainty estimation. In this section, these areas’ related work is reviewed respectively.

2.1 Imitation Learning

One of the commonly used solutions for IL is Behavioral Cloning (BC) [13], where the robot passively observes
expert’s full demonstrations and learns a policy mapping state to action via purely supervised learning. However,
BC suffers from serious safety problems, when executing its policy, the robot will drift to dangerous states. For
example, when a self-driving car steers to the edge of the road, it cannot be able to recover from it [14]. [23] has
pointed out it was due to the robot’s distribution being different from its demonstrator’s, once robot drifting away
from expert’s demonstrations, robot’s error will compound, which is a known problem named compounding error
(or covariate shift). DART algorithm [24], where noise is injected into the expert’s trajectory, can make the gap of
distribution more nearly, but DART cannot work on the scenario where the gap is serious. Inverse Reinforcement
Learning (IRL) [25] could restore the reward function from the expert’s behavior trajectory, which enables RL in
turn. [26], [27] are two different branches of IRL. Generative Adversarial Imitation Learning (GAIL) [28] build
a generator and a discriminator to find a strategy that matches the distribution of state-action pairs of experts
and does not require any assumptions about the environment. The common problem of IRL and GAIL is their
poor scalability in real-world settings and expensive computation. On-policy approaches have been proposed
to address the compounding error problem in off-policy IL. DAgger [14], [15] (Data Aggregation) is one of the
classical on-policy solutions. By continuously querying the experts for new corrections during execution, it can
make the robot’s execution trajectory distribution closer to the supervisors’. which has been demonstrated to
reduce compounding error and learn robust policies. However, DAgger suffers from several limitations: 1) it
is difficult for human experts to provide enough labeling; 2) visiting highly sub-optimal states is potentially
dangerous for a robot in real settings [29]; 3) it is computationally expensive to iteratively update the policy.
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To alleviate the computation burden, [29] tries to train a classifier to predict whether or not is safe during the
robot’s execution. However, this approach adds challenges to computational efficiency and human experts.

2.2 Learning-based Navigation

Learning-based techniques, especially the deep learning, approach the visual navigation problem in an end-to-end
fashion. There are mainly two types of learning based visual navigation methods: 1) RL based methods [6, 7, 8, 9]:
RL based methods are divided into two stages: an exploration stages, where the environment’s map information
is implicitly gathered; and an exploitation step, where the map information is used to navigate efficiently [30],
The paper [6] explored deep RL for target-driven navigation—navigating from a current location to a target
position. The main objective of goal-driven navigation is to find the minimal sequence of actions from its current
location to a target. However, this method requires 100 million frames to converge, which is too difficult to
train; [30] applied an LSTM extension to DRL for 3D maze navigation. 2) IL-based methods: [32] proposed an
imitation learning method for autonomous control of an aerial vehicle. [33] explored 3D navigation tasks such as
2D grid navigation, target-reaching and line-following with deep IL. [32] applied the IL to autonomous navigation
in complex natural terrain. [34] proposed zero-shot IL for visual navigation. All of the IL-based methods suffer
from either unsafe problem due to data distribution mismatch or poor computation efficiency.

2.3 Uncertainty Estimation in Deep Learning

There are two types of uncertainty in deep learning: 1) Aleatoric uncertainty, or statistical uncertainty, is resulted
from the intrinsic data distribution themselves [46,47]. There are some approaches [48] had been used to model
aleatoric uncertainty, but it cannot be alleviated by simply adding more samples or prior knowledge to the deep
learning system. 2) Epistemic uncertainty, as known as systematic uncertainty, come from the model parameters
themselves due to limited it theoretically could be eliminated by giving additional training samples or offering
more prior knowledge. [50] provide a deep analysis of estimating uncertainty in deep neural networks. One of the
most popularly used frameworks for estimating epistemic uncertainty in deep learning is Bayesian approximation.
Such as MC-dropout [46, 49] and Bayesian ensemble [51]. In this work, we applied MC- Dropout to estimate
the model uncertainty due to its plug-and- play advantages in existing deep network architectures. The only
thing we need to do is to pass the same input to the deep network multiple times with random dropout rate and
compute the entropy or variance of the outputs, which could be used to represent the uncertainty.

3 SAIL METHOD

In this section, the SAIL framework for context-adaptive navigation is described in detail. Firstly, we introduce
context-aware deep neural network design for goal-driven navigation, then the safety aware imitation learning
using uncertainty estimation with MC-Dropout is presented.

3.1 Context-Aware Neural Network Design

For network design, as shown in Fig.2, we consider the spatial relevance between the observations and goal image.
In each time step, both of the current observation and goal image are fed into the network. The intuition of doing
this is inspired by [6], [40], which can be used to improve the model’s generalization performance on unseen goals.
When applying the IL approach to unseen goals, the network needs no re-training for each goal. Furthermore,
we also take into account the temporal relevance of state-action pairs before the current observation. This
technique works especially on scenarios where the robot can hardly observe all of the details of the current state
(or Partially-Observable Markovain Decision-Making). Recurrent Neural Network (RNN) is used to address this
problem. The goal of the network is to estimate the current action (such as moving forward or turning right)
from all of the history states and goal together. To be specific, this network can be divided into three parts.

CNN Feature Extractor: To extract the image features of observations and targets respectively. we use
two separate weights-shared CNN streams—ResNet-50 [35]. which are used to transform the two images into
the same embedding space. ResNet-50 is pre-trained on ImageNet [36] and finetuned on our dataset before the
training stage. The outputs of the ResNet-50 are projected into a 512-dimension space.

Embedding and FC Layer: this layer is used to fuse the observation feature and goal image feature to
a 1024- dimension joint representation and then projected it to a new 512-dimension vector on fully-connected
fusion layers. We use two separate fully-connected layers to learn the joint feature representation of observation
and goal image.
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RNN Context Modeling: To learn the temporal relevance of observation sequences. RNN Layers is
added right after the embedding and FC layer. Gradient Vanishing is a key problem of RNN with long-term
dependencies. Although LSTMs [38] are more prevalent in addressing this problem in past literature, we make
use of GRUs [37] that have smaller number of parameters, simpler to use and are generally faster to train than
LSTMs.

A sequence-to-sequence IL model is built as Fig 2. At the time step t = 0, an initial goal g and a start state
s0 are fed into the network, then in each time step t > 0, the agent takes an action at with its current policy πθ.

at = πθ(st, g) (1)

Then the environment changes its state to a new state st+1 according to the transition dynamic env.

st+1 = env(st, at, g) (2)

The current hidden vector ht is a function fθ on current observation st, current goal g and the previous hidden
vector ht−1, θ is the parameter of function fθ.

ht =

{
s0 t = 0

fθ(ht1 , st) t >= 1
(3)

We can predict an optimal action a∧t with Pθ(at|ht).

a∧t = argmax
a

Pθ(at|ht) (4)

where

Pθ(at|ht) = softmax(ht) (5)

Given the training set D = (si, ai) The goal is to maximize the log-likelihood of the output action sequences.

θ∗ = argmax
θ
log

∑

(si,ai)∈DPθ(ai|si)
(6)

where

logPθ(a|s) =
∑

t

logPθ(a
t|st) (7)

We minimize the cross-entropy loss between predicted action and corrective action made by experts with
Adam optimization algorithm.

L(θ) =
∑

τinD

∑

a

[πE(a|s, g) log(πθ(a|s, g))] (8)

3.2 Safety-Aware Imitation Learning

Considering the safety issues of off-policy IL due to the data distribution mismatching. UAIL was proposed
by considering model uncertainty and combining it with vanilla on-policy training methods—Data Aggregation
(DAgger) [14], [15]. UAIL iteratively query the expert but not frequently as DAgger for new correctives samples
to train IL model. The uncertainty information in the current model is used to guide UAIL whether or not to
ask the expert for new sample labeling. Therefore, this combined on-policy IL method is query-efficient, only
when the uncertainty value is greater than a certain threshold, then we ask the expert for labeling and vice versa.
when the accumulated new labeled data is enough for training a new policy (the number of new labeled data is
larger than another threshold), we aggregate the new labeled data with the old one and retraining our network
using the new aggregated dataset. A basic idea to estimate the model uncertainty in neural networks is using
the entropy of softmax output in the categorical neural network. This method is very näıve because it always
happened that the softmax entropy is large but the real uncertainty is small and vice versa.

Uncertainty Estimation with MC-Dropout: To bridge the gap between uncertainty estimation and
deep neural network, we use MC-Dropout, a Bayesian approximation of uncertainty estimation in deep learning
to represent the confidence of action to be executed. Basically, it has been demonstrated that using Dropout
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at inference time in the deep neural network is equivalent to doing Bayesian approximation in Bayesian deep
learning. The key idea here is letting dropout doing the same thing in both training and testing time. At test
time, we will repeat beta times in passing the same input to the network with a random dropout value. MC-
Dropout provides an efficient way to estimate uncertainty with minimal changes in most existing deep networks.
It provides a plug-and-play module to deep learning for uncertainty estimation.

Safety-Aware Imitation Learning: To improve the training efficiency of the on-policy training approach,
we intend to reduce the number of queries and aggregation times for data aggregation. We propose an uncertainty-
aware imitation learning method (similar to active learning). It initializes model’s weights on initial dataset with
supervised learning, then executes the current policy until the learner’s confidence falls below a solid threshold, at
which point it queries the expert for corrective action. Uncertainty based approach may decide to stop asking for
queries once the confidence exceeds the threshold in all states. which make use of the complementary advantages
of humans and robots. Algorithm 1 summarizes the training procedure of Safe IL with uncertainty estimation.

Algorithm 1 SAIL: Safety Aware Imitation Learning.

Input: Initial demonstrations, D0; uncertainty threshold, εuncertainty; data aggregation threshold εaggregation;
aggregation episodes, M ; batch size,N ;

Output: policy parameter, θ;
1: θ0 = SupervisedImitationLearning(D0);
2: for I = 0;M do
3: for t = 0;N do
4: at+1,θ = PolicyExecute(πθt , si,t, g)
5: εuncertainty = MCDropout(at, si,t, g)
6: if at < εuncertainty then
7: at+1,E = QueryExpert(si,t, g)
8: Dt, T = AggregationPool(at+1,E , si,t, g)
9: else

10: if T > εaggregation then
11: Dt+1 = DataAggregation(D0, Dt)
12: break
13: else
14: return (4)
15: end if
16: end if
17: end forSupervisedImitationLearning(Dt+1)
18: end for
19: returnθ

4 Experiments

In this section, we evaluate the SAIL approach in the simulation environment—AI2-THOR1 [39]. We start out
by introducing the dataset and experiment setup, then present extensive experimental results on several metrics.

4.1 Dataset

AI2-THOR framework is used to collect the training data. AI2-THOR is an excellent photo-realistic interactive
3D simulator for AI agents, it provides a 3D environment that looks similar to the real-world scenes. There
are totally 120 scenes in the AI2-THOR environment covering 4 different environment types, including kitchens,
living rooms, bedrooms, and bathrooms, and each room type consists of 30 specific scenes. In AI2-THOR, the
agent’s positions are sampled from the discrete grids with 4 action spaces (move forward, move back, turn right
and turn left). Each image consists of the agent first-person view in the rooms.

4.2 Experiment Setup

In this experiment, the authors use 4 different scenes to train our models (bathrooms, bedrooms, kitchens, and
living rooms). For expert’s policy generation, we use the A* search algorithm to find the shortest path from the
start location to the target location while avoiding collisions simultaneously. In order to narrow the situation
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gap between different room types, we trained our model on each scene separately. In each scene, the authors
set 10 remarkable goal locations, such as the laptops, chairs and table lamps. For each goal, this work runs 50
stochastic starting points to evaluate the performance. To validate the proposed approach, the authors compare
and evaluate the following 4 baselines and 2 proposed methods.

(1) BC (off-policy): an off-policy IL algorithm that learns a mapping from states to actions directly by
supervised learning without any demonstrations sampling.

(2) DART (off-policy): an improved BC method that randomly injects noise into the expert’s trajectory.
(3) DAgger (on-policy): an on-policy training approach by iteratively querying experts for the new correct

sample and aggregating the new dataset for training.
(4) SaferDAgger (on-policy): an extension of vanilla DAgger method that minimizes the number of queries to

a reference policy both during training and testing stage.

4.3 Evaluations and Results

The ultimate goal of goal-driven navigation is to find a given target with minimum steps while avoiding collisions
simultaneously. Although these two facts can be affected by each other, having fewer moving steps is not equal
to having fewer collisions in real scenarios. Therefore, we evaluate SAIL’s performance from several different
metrics.

Expected Trajectory Steps. We evaluate the navigation performance by expected trajectory steps, the
expected trajectory steps are defined as the total number of steps taken to navigate from an initial start position
to a given target location. The goal of this task is to minimize the expected trajectory steps, the closer the
expected navigation steps to the shortest path is, the better the navigation’s performance is. For four different
scenes, the authors compare the training results of 4 different scenes with shortest path steps, as shown in Table
1. It can be seen that SAIL with MC-Dropout achieve shorter expected moving steps than vanilla off-policy and
on-policy IL approaches.

Navigation Safety Evaluation. In order to evaluate the robot’s safety awareness in goal-directed navi-
gation, the expected collision rate is defined as the mean percentages of robot’s collisions with obstacles when
navigating from different start locations to different target positions. In this work, the agent is allowed to collide
with the environment, when the agent collides with the environment, we recognize it as one navigation step. As
shown in Table 2. SAIL with MC-Dropout can significantly reduce the collision rate of goal-driven navigation.

Navigation Success Rate in Unseen Scenes. Another metric to evaluate navigation performance is the
navigation success rate in unseen scenes. Since there are 120 different scenes in each types of environments, we
set 100 scenes as training scenes and 20 scenes as testing scenes. Experiment result (see Table 3) show that
the performance of SAIL in unseen scenes was farther markedly improved than the baseline IL model. This can
be explained by the safer policy learned by SAIL and improved perception ability due to context-aware neural
network design.

Table 1: Expected moving steps and collision rate for goal-driven navigation.

Method Bathroom Kitchen Bedroom Living room

Shortest Path 7.11 10.87 15.37 16.02
BC [13] 15.58 37.19 55.95 66.34

DART [24] 15.51 36.62 53.38 63.21
DAgger [14] 14.31 35.52 51.39 55.21

SaferDagger [29] 13.34 25.01 46.46 48.31
SAIL(Entropy) 13.34 25.01 46.46 48.31

SAIL (MC-Dropout) 12.21 17.35 33.55 37.32

5 Conclusion

This work proposes the SAIL approach for goal-driven context-adaptive visual navigation. This approach ad-
dresses the robot’s safety issues due to data distribution mismatch and poor performance on partially-observable
visual navigation. To alleviate the safety issue, we model the policy uncertainty in deep learning with MC-
Dropout and combine it with the on-policy IL approach. To enhance the agent’s perception capability and
context awareness in partially-observable environments, we build a sequence-to-sequence deep neural network
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Table 2: Expected collision rate for goal-driven navigation.

Method Bathroom Kitchen Bedroom Living room

BC [13] 0.30 0.43 0.49 0.52
DART [24] 0.28 0.41 0.42 0.45
DAgger [14] 0.29 0.42 0.45 0.47

SaferDAgger [29] 0.26 0.38 0.41 0.44
SAIL(Entropy) 0.26 0.32 0.39 0.41

SAIL (MC-Dropout) 0.24 0.31 0.35 0.37

Table 3: Navigation success rate in unseen scenes,where the maximum penalty factor is 5 times the steps of
shortest path.

Method Bathroom Kitchen Bedroom Living room

BC [13] 0.89 0.83 0.71 0.64
DART [24] 0.91 0.87 0.74 0.67
DAgger [14] 0.88 0.86 0.74 0.68

SaferDagger [29] 0.96 0.91 0.81 0.69
SAIL(Entropy) 0.95 0.94 0.89 0.75

SAIL (MC-Dropout) 0.96 0.98 0.92 0.81

with both spatial and temporal relevance taken into consideration. Experiments on simulator demonstrated that
the proposed SAIL method had better navigation performance on several evaluation metrics, compared with the
state-of-the-art IL methods. With the safer policy, SAIL had shown successfully be adapted to unseen scenarios
and goals with fewer collisions and minimal navigation performance loss.
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