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Abstract. A discrete continuous-time random walk model for non-Markov dif-
fuse processes with fractal structure is presented. On the basis of the apparatus
of integro-differentiation of fractional order, finite-difference approximations of
diffuse models of fractional order are obtained taking into account the effects of
memory and self-organization A modification of the statistical modeling meth-
od (Monte Carlo method) was carried out and an algorithm for its implementa-
tion was constructed to study the diffusion process of fractional order in time.
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1 Introduction

Today, the fractional intero-differential apparatus is well developed and is used to
explain and simulate complex systems in nature. The development of the idea of using
the fractional integro-differential apparatus to model complex systems is handled by
many scientific schools in the world that are associated with the names: F. Mainardi
[8], I. Podlubny [5], S. Samko, A. Kilbas [9], V. Uchajkin [1] and others. Such special
attention and interest in using non-integer integro-differentiation is ex- plained by the
fact that the mathematical apparatus of differentiation and fractional- order integration
allows modeling of various processes and systems, which are char- acterized by the
effects of memory, spatial nonlocality and self-organization. A particular advantage of
fractional-differential models, as opposed to integer ones, is the ability to describe and
explore more accurately real-world models with the above characteristics and effects.
Fractal integro-differential parameters have been success- fully applied in the fields
such as physics, biology, chemistry and biochemistry, hydrology, medicine,
technology, finance. Fractional-order differential equations describe the evolution of
physical systems with residual memory, which occupy an intermediate position
between Markov systems and systems that are characterized by total memory. In
particular, the fractionality index indicates the proportion of states of the system that
persist throughout the entire process of its functioning.
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It is believed that the presence of a fractional derivative with time in equations is
interpreted as a reflection of a special property of the process - memory (eridarity),
and in the case of a stochastic process - non-Markovian behavior. Fractional spatial
derivatives reflect the self-similar heterogeneity of the structure or the medium in
which the process develops. Such structures are called fractal [5]. The use of fraction-
al order differential equation apparatus is important for studying the processes of
anomalous diffusion in the study of anomalous properties of complex-structured in-
homogeneous structures. Such structures have significant effects on memory and
spatial nonlocality.

2 Analysis of Research

Abnormal diffusion processes < x?2(r)s-~ 2k, % /ra+«) are characterized by a depar-
ture from the linear law < x 2 ()~ k. Of mean-square displacement and the presence

of the fractional index  depending on the time -, where K;, K, - are the usual

diffusion coefficients of the dimension ¢m2*sec—1 and the generalized diffusion
coefficient ¢m2*sec™ ¢, T'() is Gamma-function.

The fractional index « =1 characterizes various modes of diffusion processes:
0<a <1 a slow diffuse process, 1<« <2 an accelerated diffuse process. The case
« =2 is described by the wave equation. This approach describes the so-called non-
Gaussian processes in dynamic systems.

They are characterized by the presence of correlation dependencies for arbitrarily
large space-time scales. According to [10, 11], a differential apparatus based on frac-
tional-order derivatives can be used to model anomalous diffusion processes, or direct
modeling of the dynamics of particles and their collisions in the system.

Fractional-order differential equations are characterized by strong nonlocality and
spatial correlation and are based on both spatial and evolutionary fractional differen-
tial operators. A characteristic feature of fractional operators of differentiation and
integration is the absence of an explicit physical and geometric interpretation of such
operations [1, 9, 16]. There are several approaches to solving this problem, which can
conditionally be divided into three directions: probabilistic, geometric and physical
[18, 19].

The presence of different approaches to the determination of fractional derivatives
give rise to ambiguity regarding the correctness and physical meaningfulness of the
formulation of initial and boundary conditions depending on the type of fractional
derivative [5, 7, 16].

It is also important that the fractional derivatives and integrals included in the in-
tegro-differential equations and describe a certain process can be used in the sense of
the Riemann-Liouville, Caputo, Wright, Weil, Grunwald-Letnikov, Marcho deriva-
tives. At present, to solve fractional-order differential equations, both analytical [20,
21, 22] and numerical methods are used [2, 3, 6, 23, 24, 25].



In the works [4, 20, 21, 22], found are analytical solutions to heat conduction prob-
lems with boundary conditions of the first kind containing derivatives of fractional
order with time and spatial variable. In particular, one-dimensional cases of problems
for an infinite straight line, a semi-bounded straight line, and problems without initial
conditions are considered. Relaxation processes at the phase boundary are of complex
nature, which leads to nonlinear and nonlocal heat-transfer processes. However, one
of the analytical methods used to solve fractional-differential equations is the Laplace
transformation method [19, 22].

Analytical solutions of boundary- value problems with fractional derivatives often
have considerable difficulties; therefore, numerical methods are more efficient and
easier to apply. The theory of numerical methods for solving differential equations in
fractional partial derivatives is fragmentary and far from being complete [26, 27].
That is why a considerable number of works is devoted to finding optimal numerical
methods.

3 Formulation of Problems

The fractional-order differential equation takes the form:

o%utxr) _\  oPuur) ®)
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where u(x, r) - function of diffusion in the region A ={(x,z):0<x<L0<z<T}.

Note that the diffusion equation (1) with a fractional-order differential operator is
associated with a random walk process with continuous time if the asymptotic behav-
ior of the () - density of the waiting time is determined by the relation [1, 10]:

o(r) = O<ax<l

According to [12, 16], the Laplace transformation for
o(s) = exp(—s¥ ;%) = 1—(sr)¥ is characterized by asymptotics, while for 0 <« <1,
the function @(z) in such Laplace transformation corresponds to the conditions of
distribution density. The types of some functions ¢, () are given in [16]. In par-
ticular, w(r) can be selected in the form of Mitag-Leffler functions for which the

Laplace transformation has the abovegiven form.

By applying the Laplace transformation with respect to the time variable and the
Fourier transformation for the spatial variable, one can obtain the fractional-order
diffusion equation with the fractional Kaputo differentiation operator [5].

The differential fractional-order operators in equation (1) are defined by Riemann-
Liouville formulas:
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where T'() - is Gamma function, [ ] - is an integer part.

It is known that analytical methods of implementing differential equations with
fractional-order derivatives encounter great difficulties. Therefore, only for some
cases, exact solutions of equation (1) were obtained mainly with boundary conditions
of the first kind.

Finite-difference methods are used to obtain the numerical solution. They are based
on the approximation of fractional derivatives using the Grunwald-Letnikov formulas.
Such fractional derivatives are a direct generalization in terms of finite differences
and are determined by the dependencies for function u(x, ) on the interval [a, b]
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Where 1, = [X - a}, the value of h >0 correspond to the left-side derivatives, and
h

h < 0 to the right-side. Similarly, you can write for a functionon R :
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If the function u(x) is continuous, and its derivative '(x) is integrated on the

interval [a, x], then the Riemann-Liouville and Grunwald-Letnikov derivatives coin-

cide, in particular, with the Caputo derivatives as well [5, 16]. For further studies, we
introduce a uniform grid with respect to spatial and temporal variables in the region
A:{(X,T)ZOS X< L,OSTST}-

N-1
Then, according to (2)-(4), the fractional derivatives of equation (1) on the grid .
can be approximated by the following dependencies [9, 17]:
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The above approximations using shifted Grunwald-Letnikov formulas allow ob-
taining conditionally stable explicit and stable implicit first-order accuracy schemes
for fractional differential equations.

In fractal-structured media, it was shown in [12, 28] that the fundamental solutions
of fractional differential equations with respect to temporal and spatial variables are
characterized by properties which are intrinsic to the distribution densities of random
variables.

4 Simulation of Random Walks

Discrete models of Markov random walk for the classical Brownian motion are the
basis for the application of statistical methods for studying conventional diffusion
processes [10, 16]. For a one-dimensional case where displacements are possible only
at two nearest points, it is possible to write

u(x, 7z + A7) = plu(x —h,7) + pzu(x +h,7)

Where p. p, are the probabilities of particle displacement by one step
py+ Py =Lx=nhz=KAr, pE =u(nh,kAz) - is the probability that at the nth step the
. . 2
process is at the k™ point. (7)) _ 20%u(x7) o
or 6X2

The implementation of the statistical test method involves the use of appropriate
difference schemes [4, 14, 16]. The diffusion equation in the region
A={(x,7):0<x<L,0<7<T} takes the form:

2
ou(x,7) _ a2 ocu(x, 7) ,a = const (10)
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To use the statistical test method in order to study the model (10), we use the
Crank-Nicholson difference scheme [4]. In this case, the algorithm for calculating the
probability of a random variable location at a point of time , f takes the form:
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where xn=(N=Dh,zj= jAz,z,h - uniform splitting steps, n, j - numbers of splitting
nodes, o = 0;1.

According to [13], the value uril +1 can be interpreted as the probability of a ran-
dom variable location at the point = at the time T That is, over a period of time

[zj. zj +1] We can consider the Markov process with corresponding probabilities:

+00

ud= X pyud (12)

The coefficients p, are determined from the difference relation (12) and are the

probability of uniform random walks of some particle m around the nodes of the
difference grid (11) of approximation of the diffusion equation (1). In particular, for a
six-point pattern for two time j and j+1, such probabilities take the form:
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In particular, P, 2 in formula (13) corresponds to the value j+1. In addition, the

transfer coefficients satisfy the condition +ZOO py =188 well as the stability condi-

=—00
tion [17] of the difference scheme (11) for & <05.

The relations (12), (13) characterize the standard random walk model for the
Gaussian process. It is believed that a random particle location in the internal node of
the difference scheme can move to neighboring nodes, that is, to carry out the move-
ment of a unit length or remain in the location node, namely, to perform a zero-length
step.

5 Simulation of Random Walks for Fractional-Diffusion Process

To construct a discrete model of random walk for the differential equation of diffu-
sion of fractional order (1), we use [12, 13, 15]. Equally important in this respect is to
establish the relationship of the fundamental solution of the fractional-order differen-
tial equation (1) with the time variable of the fractionally stable distributions [16]. In
particular, the fundamental solution of the equation (*) with the fractional differentia-
tion operator Caputo:
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is a probability density function of the fractionally stable distribution [9, 13].
For « = 0.5 we get a Gaussian solution [16].

Then, in the equation (11) obtained in terms of the relations in discrete form, you
can move from the function u(x,r) to the probability density (or relative diffusion

concentration). This, in turn, makes it possible to move on to the probability of a par-
ticle location at a nodal point of a discrete grid. In this regard, we introduce the desig-
nation.

Given the relation (7)-(9) according to [13, 17], we can write:

G(x,7) =

z rm-a) 1. m Ar%Kg
= X
m-ollafim+1)" " Wb ”
©  rli-p) k-1 © rli-p) k-1
C, X2 ~—\Vn_j+1TC_ X e \ VAN
+i:0F(—ﬂHI+1) n-i+1 i:ori—ﬂHHl) n+i-1
_ ©  rlm-a _m . A%k
VE:aVﬁ 1 3 ( ) Vﬁ m a .
mZZF‘—aHm+1) h’B
(15)

3 F(i—ﬂ) k-1 ® F(i—ﬂ) K1
C+iEOWVn—nﬁc_ifomvn“_l

The relation for determining Vh can be considered as a modeling scheme for a

random process with discrete time. The value V';] characterizes the probability of the
particle location at the point =~ at the time ;,  during a random walk in the differ-

ence grid. The coefficients Vh correspond to the probability of transitions in space

and time. We denote them by P1i Pom - Then (15) can be written as:
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Using the relation (16) for each case of random walk, we can get a finite number of
values p 1i and p om” In addition, these values must satisfy the conditions of non-

negativity, normalizing, which are typical of probabilistic characteristics, that is
+ oo + 00 L +®
P20 Py 20, I ppt X pyo =1 The conditions tho, y v}‘ =y VP
i =—o0 m=2 i=—oo i=—o0
must also be met. The second condition ensures the preservation of the total number
of particles.



6 Numerical Experiment

Numerical experiments were performed for materials with density p=460kg/m3,
K, =05. For the equation () was specified boundary conditions u(e,z)=u=b,r=7.

Initial conditions: u(x,00=x-a,if 0<x<(b-a)/2, u(x,0)=b—-x, (b—a)/2<x<h.
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Fig. 1. Changing the function u over time for o = 0.7 with different values x .
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Fig. 2. Changing the function U over time for « = 0.9 with different values x .

Quantities h =0.1, Az =0.1. Figures 1 and 2 show the dependences of the function
change u(x, r), respectively, for the fractal coefficient o =0.7 and « =0.9 for dif-

ferent values x, which are respectively x = 0;0.25;0.5;0.751.



The analysis of graphic dependences indicates the effect of the parameter « on the
function change u(x, ). Increasing the parameter ¢ increases the number of maxi-

mum values of the curve for different values of change of coordinates.

Conclusions

On the basis of discrete models of diffusion processes with fractional derivatives
shows a modification of the method of random walk on the implementation of the
mathematical model of a diffusion process subject to temporal nonlocality. For nu-
merical implementation of such a mathematical model, finite-difference schemes are
proposed, an algorithm is developed and software is created. The results of numerical
experiments for the implementation of a mathematical model of diffusion processes
for different values of the fractional index according to time are given by the statisti-
cal method.
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