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Abstract. We consider an important technology of linear algebra, aimed at re-

ducing the size of files intended for storing images and transmitting them over 

the network. The technology involves the use of elements of tensor analysis 

based on singular decomposition. A feature of the technology used is the repre-

sentation of the image by the matrix triad, which includes the tensor core and a 

pair of unitary matrices containing right and left singular vectors, respectively. 

Compression is achieved by one recurrent procedure, which involves lowering 

the rank of the triad to the level of allowable errors while maintaining the origi-

nal image size. The compression algorithm is an iterative procedure with con-

trol of the Frobenius norm by the error matrix of the deviation of the original 

and the approximation matrix, which ensures the permissible value specified by 

the designer. The article establishes the basic features of the algorithm, in par-

ticular, convergence in a finite number of steps. This technology may be part of 

some hybrid technology based on different compression methods. The simula-

tion was carried out on typical digital images, confirms the productivity of the 

procedure, the results obtained are compared with other types of decomposi-

tions according to the criteria of the signal-to-noise ratio, the standard error, and 

visual assessment of perception. Discusses the use of developed technology to 

store information belonging to big data. 

Keywords: Image Compression, Singular Decomposition, Matrix, Algorithm, 

Codebook. 

1 Introduction 

In medical practice, non-invasive research methods are widely used, the main ad-

vantages of which are the visibility and accuracy of the measurements. Such methods 

include ultrasound diagnostics, computed and magnetic resonance imaging, radiog-

raphy and others. The result of the study is shown in the images, the increase of which 

inevitably causes the problem of storage and transmission of measurement data to the 

end-user. A natural approach to solving this problem is image compression. 
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Compression is a popular technique for converting images to a form that is conven-

ient for transmission over wired and wireless communication channels and also for 

their storage [1]. To date, several effective techniques have been developed based on 

different approaches. The most commonly used are considered hybrid techniques, 

including several compression methods, such as JPEG, JPEG2000. The main differ-

ence between the two is the replacement of low-performance transforms, such as 

Huffman and discrete-cosine, with more efficient arithmetic coding and wavelet trans-

form, respectively. Analysis of the development of these methods shows the possibil-

ity of replacing individual stages of the method with more effective ones. The main 

goal of such methods is to improve the compression and recovery performance of 

images and minimize distortion. The best compression is achieved in the algorithms 

that involve losses, where frequency separation of the image components is assumed. 

One of the effective methods that appeared at the end of the last century is vector 

quantization. The method assumes a high correlation between the individual elements 

of the image. However, there are some computational difficulties associated with the 

definition of a code word. The main output, as in the previously developed methods, 

is the discarding of several codewords, provided that it does not give significant dis-

tortion to the final product. A possible drop option can be constructed using the least-

squares method. 

The study aim is to study the possibility of linear algebra methods for compressing 

medical images. 

2 Papers Review 

There are many works in which the well-known method of linear algebra is applied, 

which assumes decomposing in singular values (svd), in which the image is decom-

posed into a matrix triad. By discarding small singular values, the computational cost 

of presenting the result can be reduced. Currently, there is an increase in work related 

to the use of singular decomposition in the interests of medical research. The state of 

the issue of the use of singular decomposition in science and technology is presented 

in [2]. So, in the work of [3], a singular decomposition is proposed for the detection of 

brain tumors. The method uses a comparison of the measured parameter with its 

threshold value. However, there are some problems associated with the application of 

svd. 

In [4], the use of singular decomposition together with the vector quantization al-

gorithm for image compression is proposed, which, in the authors' opinion, seems to 

be the best technique compared to the discrete cosine transform, which also uses the 

application of the transform to individual image blocks. The number of vectors in-

volved in quantization is determined by the rank of the matrix. The method involves 

the elimination of unnecessary (exceeding the rank of the image matrix) computation-

al operations with small singular numbers when the image is restored. Block quantiza-

tion helps to reduce computational costs when applying singular decomposition to the 

entire image. 
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The authors of [5] propose a hybrid compression method based on the sharing of 

singular decomposition and the Karhunen-Loeve transform. Since the Karhunen-

Loeve transform is applied to the entire image, the quality of the reconstructed image 

when packaged by the singular decomposition of small blocks is higher. The size of 

large blocks is determined by the bit distribution and is constant for the selected im-

age. Switching between compression methods is proposed to implement the largest 

functional, determined by the transmission rate and distortion at this speed.  

Three schemes for the use of singular decomposition were studied in terms of the 

quality of the compression and the computational complexity of these processes are 

presented in [6]. It is noted here that those algorithms that allow you to adaptively 

choose the size of the block to which the singular value decomposition is applied have 

greater efficiency. 

One of the modern trends in the field of processing large data, which should in-

clude the image, is the use of tensor networks. The use of tensor networks is used to 

construct an image compression algorithm proposed in [7]. The image is transformed 

into the n-dimensional tensor of the real keta coefficients, which determines the quan-

tum state represented by the matrix products. Visual information is represented by the 

state of a truncated matrix of multiplications. The method is rather complicated due to 

the uncertainty of finding important values in the matrices of multiplications. To 

overcome the resulting uncertainty, the authors of [7] propose the construction of a set 

of tables, the closest table is found by a genetic algorithm.  

The method of representation of images based on the singular decomposition of a 

high order is proposed in [10]. Unlike the usual representation of a tensor by a set of 

singular values and right and left unitary matrices, orthogonal functions of one varia-

ble are used. When scaling images, the main tensor core retains its shape, while the 

function matrices expand by a given scale factor, the missing elements of the orthog-

onal function are complemented by the cubic interpolation method. To compress the 

method must be supplemented by some means. 

Compression of hyperspectral images based on the Tucker decomposition is pre-

sented in [11]. Following this method, the image is decomposed into three matrices of 

nuclei and three transformation matrices. The optimal decomposition, which assumes 

a high compression ratio and a signal-to-noise ratio, is achieved by the block-

coordinate descent method, which allows a compressed image to be obtained. To 

eliminate the dependence of the compression effect on the choice of initial values of 

the matrices, an algorithm of compressive sensitivity is used. The result set is used for 

onward transmission. Noises are removed except small singular values from the ma-

trices symbolizing the tensor core. 

A parallel computation method using the Tucker decomposition to compress scien-

tific data is proposed in [10]. The composition of various methods for image pro-

cessing proposed in [11, 12] is also useful. 
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3 Problem Statement 

Image transmission via the communication channel is compressed. A unit of infor-

mation in digital images is a pixel, and the entire set of image pixels is conveniently 

represented by a numeric matrix, so it is natural to apply matrix methods to compress 

images. The greatest interest among the methods of working with matrices with real 

values is attracted by the tensor representation in the form of a triple of matrices, one 

of which is diagonal and pairs of orthogonal matrices. 

The matrix А  Rmn of real values is algebraically represented by a three-

dimensional tensor in the form of a bilinear form, obtained from the well-known one, 

represented by the product of three matrices in the form of a singular decomposition 

of the form 

 
TNMA  , (1) 

where  is the kernel of a tensor of the same size as A, with nonnegative elements i 

on the main diagonal (singular values) and the rest zero. The matrices M  Rmm and 

N  Rnn are unitary matrices consisting of left and right singular vectors, respective-

ly. 

Image compression size shrinks by grouping or dropping part of the pixels. If the 

grouping algorithms allow you to restore the quality of images, then discarding sever-

al pixels leads to a loss of its quality when scaled. Drop pixels in the compression 

process occurs based on signs of repeatability or frequency. Then the problem of 

compression is reduced to the definition of a triplet of smaller matrices. 

The resulting matrices are sequences of numbers, so the compression process is 

similar to the coding process, where the input n-dimensional vector xRn is converted 

by the encoder into a code word (x) of a smaller size l = n / K (l < n), where K is the 

compression ratio. The discarding of a part of the information is a source of image 

distortions, which, as a result of compression, with identical image sizes, is evaluated 

by various criteria, the most common among them are the average square of errors, 

the signal-to-noise ratio, and visual criteria. The average error square is written as 
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where M, N are the vertical and horizontal dimensions of the image, or the signal-to-

noise ratio is represented by the formula 
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where xmax is the maximum pixel value of the image, R s / w is the representation of the 

signal-to-noise ratio.  

The purpose of the paper is to determine the matrices M, N and the kernel of the 

tensor D, which satisfy the specified image quality defined by formulas (2), (3). 
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4 Preliminary notes 

Let the image A be possible to represent the original in the form (1) and there are 

orthogonal matrices M, N, which represent sets of orthonormal vectors Mk = [m1, m2, 

…, mk] and Nk = [n1, n2, …, nk], defining singular vectors, such that the matrix  con-

tains on its main diagonal singular numbers i placed in this order 

 0...... 121   nrr , (4) 

where r is the rank of the matrix A. As is known, they are the non-negative square 

roots of the eigenvalues of the symmetric AAT matrix, T is the transposition index. 

Theorem. Suppose there are matrices А, Â , Е  Rmn such that || A ||  || Â  ||, || E || 

 e R+ \ 0. For a matrix A of rank k > 0, there is decomposition in the form (3) and a 

recurrent procedure 

 iii AEE ˆ
1   (5) 

with E0 = A and 



i

j
jjji nmA

1

ˆ , where mj, nj are the vectors of the matrix M, N, 

respectively, i = 1, 2, ..., allows to get the matrix A of the rank p such that 

 eAA  ˆ  (6) 

for a finite number of p < k steps. 

Proof. Using the property for unitary transformations (formula 5.7 out of [9]), we 

obtain the representation 
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Since the vectors mi, nj in (7) are orthogonal, 
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then 

 iiiiiiii nmEnmnmAEE   )...( 1111 . (9) 

Since for the applied decomposition, (4) is fulfilled, the condition for stopping the 

procedure is the condition 

 enm iii  . (10) 
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This proves the first part of the theorem, i.e. statement about the convergence of the 

computational procedure. If i = p, then i is the number of decomposition steps, if i = k, 

then e = 0. The theorem is proved completely. 

5 Simulation 

It is assumed that the image signal x displayed by the grayscale color model is a nu-

meric matrix, which is further decomposed into the kernel  = (1, …, N) and the 

codebook D. The codebook is a memory of coefficients (x) = (M, N)  D, which 

remain unchanged during transformations, encoding implies a reduction in the size of 

the core relative to the original size with permissible distortions. A threshold c is pre-

liminarily set, according to which the distortions are considered permissible. The 

coding system iteratively selects the size of the kernel ̂  that satisfies the specified 

threshold according to the selected quality criterion, for example (2) or (3). At the 

output of the comparator, we obtain the image *x̂ , which satisfies the specified qual-

ity. In the general case, the coding system is supplemented with auxiliary elements 

that perform normalization operations, splitting the image into blocks. The image 

coding scheme is shown in Fig. 1. 

 

Fig. 1. Image encoder block diagram 

If necessary, the compressed image can be restored by the inverse transform, if it is 

provided for by the compression algorithm. In this case, the dictionary is also availa-

ble to the decoder. Decoding is the inverse mapping of the code word to the input 

vector. In loss algorithms, the original image is not restored.  

The size of the dictionary is determined by the set of codewords L, using binary 

coding. The size of the code word is V = log2L, bit. To simplify the computing sys-

tem, the matrix of images is pre-divided into submatrices, with which it is convenient 

to perform calculations. The minimum size of the image blocks is 88 pixels. When a 

block of information is compressed by K times, the code word is also reduced by K 

times. 

The simulation was carried out on a personal computer with an image of 384384 

pixels. The reference image was previously divided into sub-images of 88 pixels. 

Then, the procedure (5) was applied successively to each sub-image, to get an approx-

imation to the original image with the specified quality, i.e. 
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Here, E is the residual matrix obtained after obtaining p essential components of the 

svd decomposition, estimated by the Frobenius norm 

 
2

T
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Image quality was controlled by criteria (2), (3). 

6 Experimental Results and Discussion 

The proposed algorithm was estimated for the original image obtained as a result 

ultrasound examination of the abdominal cavity, the view of which is shown in Fig.2. 

 

Fig. 2. Original image 

Algorithm (5) was studied to test its effectiveness at different values  image Fig. 

2, calculated criteria (2), (3), made a comparison with full decomposition and partial 

decomposition. Images on different  are shown in Fig. 3-6.  

 

Fig. 3. Compressed image, =0.1 
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Fig. 4. Compressed image, =0.9 

 

Fig. 5. Compressed image, =0.999 

 

Fig. 6. Compressed image, =0.9995 

Comparison data are presented in Table 1. Here R is the rank of a compressed ma-

trix, K is the compression ratio. 
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Table 1. Experimental results. 

 R emse Rs/w K 

0 3328 2.6110-5 93.971 1 

0.1 2995 0.0058 70.49 1 

0.3 2330 0.0058 70.49 1 

0.5 1664 0.0058 70.49 1 

0.7 998 0.0058 70.49 1 

0.9 333 0.0058 70.49 0.96 

0.999 33 0.0058 70.49 0.83 

0.9995 17 0.0158 66.1364 0.786 

 

Analysis of the obtained results allows you to confirm the performance of the algo-

rithm. Acceptable image quality was maintained by reducing the size of the decompo-

sition core matrix by 200 times. Low compression ratios were obtained because of 

additional conversion of the reconstructed image to the format JPEG. Better compres-

sion can be achieved by preserving the triad of transformation matrices in numerical 

form, using, for example, the TXT format. The best image quality when visually 

evaluating the quality of compression is obtained at small values of , as it should be. 

The proposed algorithm is useful for compressing medical images. 

7 Conclusion 

The study showed the effectiveness of using singular decomposition for storing and 

transmitting in the network medical images typical of non-invasive research methods. 

As a result of the study, it has been found that matrix methods based on decomposi-

tions that can be combined with other methods, such as grouping, traditionally used in 

hybrid compression methods, are quite effective for image compression. Higher im-

age quality is achieved by increasing the accuracy of the truncated description ap-

proaching the original image. The developed algorithm has the property of adaptabil-

ity. Further research is planned to be devoted to searching methods for finding the 

unknown tensor core for given unitary matrices M, N. 
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