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Abstract. The technique of gene expression profiles exploratory analysis on the 

basis of the use of Bioconductor package tools is presented in the paper. 

Applying this method allows forming the matrix of genes expression for further 

gene regulatory networks reconstruction and simulation of the obtained model. 

The gene expression profiles of human neuroblastoma cells obtained using high 

throughput RNA-sequencing technique have been used as the experimental data 

to evaluate the effectiveness of the appropriate step implementation. Applying 

of the proposed technique involved removing low expressed genes at the first 

step. The number of genes was reduced from 53186 to 7435 at this step. The 

filtered gene expression profiles normalizing was considered at the next step. 

The quality of data normalizing was evaluated by both various graphic tools and 

using quantitative criterion, which was calculated based on the cluster analysis 

for the samples which were previously distributed into clusters.    
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1 Introduction 

Development of technique of gene expression data processing in order to allocate high 

expressed genes, which allows us to distinguish investigated samples, is one of the 

current directions of modern bioinformatics. Implementation of this technique create 

the conditions to reconstruct gene regulatory networks with high level of sensitivity. 

The further simulation of the reconstructed gene regulatory networks can allow us to 

better understand the character of genes interconnection and, as a result, it can help us 

also to understand the ways of influence to the appropriate key genes in order to 

change the expressions of genes of the network according to goal of the current task. 

Two techniques are actual to form the array of gene expression 
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nowadays: DNA-microchip technique [1,2] and RNA-molecules sequencing method 

[3,4]. DNA-microchip technique is significantly cheaper in comparison with RNA-

molecules sequencing method. As a result of this technique applying, we obtain the 

matrix of light intensities. Then, four stages should be implemented to transform the 

light intensities matrix into matrix of genes expression: background correction, 

normalization, PM correction and summarization. Each of the stage can be 

implemented by different ways [5–7]. This fact decreases the quality of obtained 

matrix of genes expression.  

Applying RNA-molecules sequencing method allows obtaining the number of 

investigated genes for studied samples directly. In this reason, this method more exact 

in comparison with DNA-microchip technique. The number of genes determines the 

level of this gene activity or its expression. At the next step it is necessary to remove 

non-expressed genes for all samples and gene with low level of expression. At this 

stage it is appear the problem identification of boundary value which allows dividing 

genes to lowly-expressed and highly-expressed. Moreover, the matrix of counts of 

genes is not suitable for the following processing. Thus, initially, the data should be 

normalized. This step assumes transformation the counts values into the same suitable 

range. There are various normalized methods to process gene expression values. 

However, it should be noted, that the task of objective selection of appropriate 

normalizing method based on the quantitative criteria has not effective solution 

nowadays. This fact indicates the actuality of the research.       

2 Formal Problem Statement 

A block chart of procedure to process the experimental data which are obtained by 

RNA-molecules sequencing technique is presented in fig. 1. The studied dataset is 

presented as a matrix of counts, values of which are determined the number of genes 

corresponding to appropriate sample. 

 

Fig. 1. A step-by-step procedure to transform a matrix of counts to the matrix of highly-

expressed informative genes 

One of the most important steps of this procedure implementation is the data 

normalizing. The normalized values of gene expression profiles should have the equal 

ranges and their norms should be distinguish minimally between each other. 



Moreover, the values of genes expression should allow us to identified the samples 

which belong to various clusters. Considering hereinbefore, evaluation of quality of 

gene expression profiles normalizing will be performed visually by analysis of both 

box plot and kernel density plot, and based on quantitative criterion.  

 The main problem, which is solved within the framework of the current research, 

consists in comparison analysis of various normalization techniques of gene 

expression values using different normalizing quality criteria.      

3 Literature Review 

Various techniques have been proposed over last years to pre-process the results of 

RNA-molecules sequencing experiments [8-16]. These tools are differed between 

each other by types and thresholds which are used to process the counts of genes and 

by algorithms which are used for filtering and alignment of the investigated values. It 

should be noted that the choice of the alignment algorithm has very great influence to 

the evaluation accuracy of RNA molecules abundance in the sequenced samples. In 

this reason, testing different tools for processing of data of RNA-molecules 

sequencing experiments can help us to choose the best technique for current type of 

data.  

After implementation of the alignment procedure, it is necessary to normalize the 

recovered values of miRNA counts for purpose of removing variations in the data 

which have not biological origins and, as a result, can influence to the ranges of 

measured values change. Correct applying the normalizing technique allows 

minimizing the experimental and the technical bias without noise introduce. In 

[17,18] the authors have proposed several normalizing techniques for data of RNA-

molecules sequencing experiments. As a result of comparison of different 

normalization methods effectiveness, the conflicting results were obtained in these 

works. So, the authors in [18] proposed using the locally weighted linear regression 

and quantile normalizing techniques. At the same time, they were discouraging 

against the use of trimmed mean of M values (TMM technique). The obtained results 

were validated based on the use of polymerase chain reaction (qPCR). In [17] the 

authors proposed the opposite, to use against quantile normalization the TMM 

method. The simulation results were used to confirm these findings. An assessment of 

the relative effectiveness of various pre-processing techniques in terms of statistical 

criteria, bias, sensitivity and specificity in order to detect the differential expressed 

genes can be achieved on the basis of complex implementation of both qualitative and 

quantitative normalizing quality criteria using current techniques of data processing 

[19–26].  

The aim of the paper is exploratory analysis of various technique of data from 

RNA-molecules sequencing experiment processing based on the complex use of 

Bioconductor package tools and various quality criteria to estimate the effectiveness 

of the data processing.  

 



4 Materials and Methods 

4.1 Data Set 

We used the dataset GSE129336 generated from Gene Expression Omnibus (GEO) 

database [27] as the experimental data during the simulation process. The data 

contains the results of expression profiling by high throughput sequencing in human 

SH-SY5Y neuroblastoma cells [28]. The transcriptomic responses to Mn dose 

(0,1,5,10,50,100 μM MnCl2 for 5 h) in the investigated cells with three biological 

replicates per Mn treatment were examined during the experiment performing. Thus, 

the examined samples can be divided into six clusters considering the Mn dose. Each 

of the clusters contains three samples. This fact can be used to calculate one of the 

criteria to estimate the quality of gene expression values processing. Each of the 

samples contained 53186 of genes. So, the initial dataset contained 53186 of genes or 

rows and 18 of columns or samples. The early analysis has shown, that there were 

27838 non-expressed genes (zero for all samples). Of course, these genes can be 

removed from the data at the first step. Moreover, the lowly-expressed genes for all 

samples can be removed from the data too. The search of the thresholding value to 

remove lowly-expressed genes is one of the solved tasks within the framework of this 

research.      

4.2 Removing Lowly-expressed Genes 

As was noted in the section 4.1, the studied dataset contains 53186 of genes. 

However, 27838 of genes are non-expressed for all samples (the count value is zero). 

Thus, the number of the expressed genes can be changed from 53186 to 25348 of 

genes.  

At the next step, it is necessary to remove lowly expressed genes considering the 

appropriate thresholding value. The initial values of the counts of genes are not 

suitable for solve this task since the range of the genes count value change is very 

large (in the case of our dataset this range is changed from o to 47434890). In this 

case it is necessary to transform the count value scale into other, more suitable scale. 

To solve this tack, Bioconductor package contains cpm() function which allows 

transforming the counts values into count-per-million values as follows: 
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where n is number of rows, xij is value in i-th row and j-th column. Applying this 

function allows us to obtain the new, more suitable, range of the data values change 

(from 0 to 380367.8).  

The main idea for lowly-expressed genes removing is the following: the use a 

nominal thresholding of 1 cpm value (this value is corresponded to 0 log2(cpm) value) 

allows dividing the genes into two groups (expressed and unexpressed). If value of 



gene expression is more than this threshold, the gene is identified as expressed. 

Otherwise, the gene is identified as unexpressed. Considering the number of samples 

in the clusters we can suppose that the genes should be expressed in at least one 

cluster (three samples) for the further analysis. 

4.3 Normalizing Gene Expression Profiles 

The following normalizing techniques were evaluated during the simulation process: 

1) lcpm; 2) TMM; 3) TMMwsp; 4) RLE; 5) upper quartile scaling. Brief describing 

each of these techniques is presented below. 

1. lcpm – the simplest normalizing technique, the log2(cpm) values are calculated 

during this technique implementation. 

2. TMM – trimmed mean of M is the normalizing technique by total count of 

scaling. The counts quantity for an appropriate target for all samples is estimated 

during TMM technique implementation. If an expression value is identified in the 

same proportion for all samples, this gene is identified as non-differentially expressed. 

It should be noted that this technique does not allow considering the potentially 

different RNA molecules which are presented in the samples. Applying this method 

allows us to calculate a linear scaling index for appropriate sample considering 

weighted average after transforming the data using log fold-changes (M) relative to 

the absolute intensity in the reference sample (A) [29]. 

3. TMMwsp – TMM with singleton pairing. This technique is a variant of TMM, 

in which the data with a high proportion of zeros are processed. Implementation of the 

TMM method assumes that the genes which have zero value in either library are 

ignored when pairs of libraries are compared between each other. As opposed to 

TMM method, implementation of the TMMwsp technique assumes that the positive 

counts from such genes are reused to increase the quantity of features which are used 

to compare the libraries. The singleton positive counts are paired up between the 

libraries in decreasing order of size and then a slightly modified TMM method is 

applied to the re-ordered libraries. 

4. RLE – relative log expression technique. Implementation of this method 

assumes that the median library is calculated from the geometric average of all 

columns and the median ratio of each sample to the median library is used as the scale 

factor. 

5. Upper quartile scaling – is the upper-quartile normalizing technique, in which 

the scale factors are calculated from the 75% quantile of the counts for each of the 

libraries, after removing genes that are zero in all libraries. 

4.4 Quantitative Criterion to Estimate the Quality of Data Normalizing 

The main idea to evaluate the quality of data normalizing is the following: as we 

noted hereinbefore, the samples can be divided into six clusters considering the dose 

of Mn. Each of the clusters in this case contains three samples. It is naturally that 

informativity of gene expression profiles is determined by their ability to distinct the 

samples in different clusters. Thus, the quality of data normalizing can be estimated 



based on clustering quality criterion which should consider the samples distribution 

within clusters and the clusters distribution in the feature space. Considering the high 

dimension of the studied vectors, the correlation metric should be used to estimate the 

proximity level between the vectors. This quality criterion of the samples and clusters 

grouping was calculated as multiplicative combination of Calinski-Harabasz criterion 

and WB-index [30,31]: 

2

2

)(

)1(

QCBNN

QCWNN
QNC

cs

cc




                                           (2) 

where: Nc is the clusters quantity; Ns is the samples quantity; QCW is an average 

distance from samples to centers of the clusters where these samples are allocated; 

QCB is an average distance between clusters’ centers. It should be noted that 

minimum value of the criterion (2) corresponds the best normalizing technique.  

5 Experiments, Results and Discussions 

Fig. 2 presents the results of lowly expressed genes reducing in accordance with 

technique which are described in 4.2. To increase the charts informativity the data 

preliminarily were transformed using log2(cpm) function. The number of genes was 

reduced at this step from 25348 to 7435. The analysis of the obtained in fig. 2 

diagrams allows concluding that level of genes expression informativity significantly 

increased due to remove lowly expressed values. The same conclusion can be done 

based on the box plots analysis (See Fig. 3). In the case of filtered data use the values 

of gene expressions for all samples are distributed more evenly and they are shifted to 

the side of larger values.  

 

Fig. 2. Density plots of non-filtered and filtered gene expression values distribution for 

neuroblastoma data samples 

The next step of the data preprocessing is their normalizing. Fig. 4 shows the chart 

of the clustering quality criterion (2) versus the normalizing method. To calculate this 

criterion values the data previously were divided into clusters considering the Mn 



dose. It should be noted that in the case of non-normalized filtered data the value of 

this criterion was 100,05. 

 

Fig. 3. Box plots of non-filtered and filtered gene expression values distribution for 

neuroblastoma data samples 

 

Fig. 4. Dot plot of the quality criterion versus the normalizing method 

The obtained results analysis allows concluding that normalizing process 

significantly increases the quality of the data in terms of the quality criterion (2). The 



value of this criterion for non-normalizing data 100,05 decreases more than 10 time. 

Comparison analysis of various normalizing methods has shown that the easiest lcpm 

method is showed the worst results in comparison with other methods.  The difference 

between methods TMM, TMMwsp, RLE and Upper quartile scaling is very small, 

however, the value of the criterion (2) achieved the minimum one in the case of 

Upper quartile scaling method apply. This fact indicates the reasonable of this method 

use for current type of data normalizing. 

At the next step it is necessary to remove heteroscedasticity from the data. The 

analysis of the normalized data has shown that in the case of RNA-seq data use, the 

variance values are not depend on the mean values. Methods that counts of the model 

with the use of Negative Binomial distribution are based on a quadratic mean-

variance relationship. In limma package of R software, linear modelling is performed 

using the normalized values. In this case the data should be normally distributed and 

the mean-variance relationship is evaluated with the use of precision weights 

calculated by the voom() function. Fig. 5 presents the results of this step 

implementation.  

 

Fig. 5. Visualization of the heteroscedasticity removing from the data 

The left chart in the Fig.5 shows the mean-variance relationship of normalized 

gene expression values. Usually, the voom-plot shows a decreasing trend between the 

means and variances which are appeared due to an existence of both the technical 

incorrectness during the sequencing experiment performing and the biological 

variation among the replicate samples from various cell samples. Typically, the 

results of the experiments with high level of biological variation are presented as a 

flatter trends. The variance values in this case are not significantly changed for high 

expression values (right chart in Fig. 5). And otherwise, experiments including data 

with low biological variation usually have tend to sharp decreasing the variance 

values. Moreover, the voom-plot allows us to visual evaluate the quality of gene 

expression filtration process. If filtration process of lowly-expressed genes is 

insufficient, then, the variance values should be decreased at the low end of the 

expression scale due to very small gene expression values.  



In order to visual summarize the results for all genes in obtained groups, we create 

a mean-difference plots using the plotMD function of limma package. These plots 

allow us to display log-Fold-change values from the linear model which can be fitted 

against the average of log-expression values. These charts allow us to identify 

differentially expressed genes. The charts are shown in Fig. 6. 

 

Fig. 6. Mean-difference plots of gene expression profiles for investigated groups 

Result of the visual analysis of the obtained diagrams allows concluding the 

greatest number of genes in investigated groups have high level of differentially 

expression (black color or number 1).  It means that these genes are informative to 

distinct the samples for the further processing. However, the data contains some 

quantity of lowly-expressed genes (red color or zero number). It is means that these 

data need the following processing for purpose of non-informative genes reducing in 

terms of various quantitative criteria.  

Fig. 7 shows the box charts of the processed gene expression profiles. The 

samples previously were reordered considering Mn dose from 0 to 100 μM. Analysis 

of character of gene expressions distribution allows us to conclude about correctness 

of data preprocessing step implementation. The values of gene expression have the 

same and not so much ranges, all genes are enough highly-expressed for all of the 

samples. However, it should be noted, that there is some quantity of lowly-expressed 

genes (for example, in Mn_1 sample). This fact indicates about necessity the further 

data processing on the basis of the use of current techniques of complex data 

processing.  



 

Fig. 7. Results of gene expression profiles of neuroblastoma data processing 

6 Conclusions 

This paper presents the research results about processing of RNA-molecules 

sequencing experiments. The dataset GSE129336 generated from Gene Expression 

Omnibus database was used as the experimental one. This data contains the results of 

expression profiling by high throughput sequencing in human SH-SY5Y 

neuroblastoma cells. The initial data matrix contained counts of expressed genes for 

studied samples. At the first step, we have removed lowly-expressed genes. The 

number of genes was changed from 53186 to 7435. Then, we have compared various 

normalizing technique using clustering quality criterion as the main criterion of 

appropriate normalizing method effectiveness estimation. At the next steps we have 

analyzed the obtained results using various visualization techniques. The analysis of 

the processed genes expression values distributions allows concluding about high 

effectiveness of the proposed technique, since its implementation allows allocating a 

set of similarly distributed highly-expressed genes for the following processing.     
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