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Abstract. The article is devoted to the problems of construction the recommen-

dation information system for visual analyzer disease diagnostics by electro-

retinograms. The mathematical electroretinogram model in the form of linear 

stochastic process is constructed. Method of comparative analysis of electro-

retinogram angle coefficients as vectors in linear space providing ERG imple-

mentation selection before diagnostics is proposed. Angular coefficients and 

coefficients for orthogonal signal decomposition in the system of basis Cheby-

shev, Kravchuk, Lager functions are proposed for application. In order to make 

diagnostic decision the statistical method of hypotheses testing developed on 

the basis of likelihood ratio logarithm analyses (Neumann-Pearson criterion) is 

used.  

Keywords: visual analyzer, electroretinogram, statistical hypothesis, linear 

random process 

1 Introduction 

Nowadays modern information technologies and IoT services have been or are being 

implemented actually in all healthcare spheres. Due to the information technologies 

use the doctors are able to carry out objective disease diagnosis, store and use selected 

information effectively at all stages of direct care. These are the overall information-

recommendation systems which make it possible to  provide selection processes, stor-

age and processing of information as well as recommendations for proper diagnostic 

decision-making by doctors on the basis of received information. 
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2 State of research 

The basis of the visual analyzer disease diagnostics is the comprehensive investiga-

tion at the early stages of pathology using the latest medical techniques, modern diag-

nostic equipment for reliable prediction and early treatment.  

Despite the large number of examination and diagnostic techniques, visual system 

treatment, the problem of ensuring the disease accurate diagnosis is still very im-

portant. Among the existing diagnostic techniques special attention lately is paid to 

the method of evoked potentials. [1,2] The essence is to diagnose the disease by anal-

ysis of electroretinograms (ERG), each of which is the response to the eye retina irri-

tation in the form of short-time light impulse of a certain intensity, duration and wave 

length.[1,3,5] 

The problem of ensuring the selection and proper statistical processing of biomedi-

cal information, recognition and evaluation of informative diagnostic parameters 

providing registration of changes in the human body is very important in medical eye 

research practice. The use of computer equipment makes it possible to systemize ex-

isting statistical data.   

Foreign samples of medical radio-electronic equipment used in Ukraine have sev-

eral disadvantages: they do not provide complete examination of the visual system, 

automation of electrophysiological signals analysis, high cost of the above listed di-

agnostic systems, absence of diagnostic unit providing the diagnosis of visual analyz-

er disease. 

3 Information system    

The general schematic structure of information system for eye disease diagnosis de-

veloped according to the requirements of  International Technical Commission on 

Electroretinogrphy is shown in (Fig. 1) [8].  

Bioobject Electrodes
Bioelectrical 

amplifier

Analog-digital 

converter

Micro suction pump

Photostimulator

Control and information 

display unit

 
Fig. 1. General schematic structure of IS for eye disease diagnosis 

 

The system consists of special non-polarized electrode for weak signals selection; 

micro suction pump is designed for sensor holding on eye cornea. Signals amplifica-

tion and filtering is carried out by highly sensitive amplifier of biopotentials.  

Received data processing is performed by specially developed application program 

package for analysis and diagnosis of patients by means of electroretinograms based 

on investigations carried out by the authors. 
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4 Electroretinogram models in the form of linear stochastic 

process 

ERG is the output signal of the visual system where light signals (of various intensity, 

frequency, duration) are sent to its input. The mechanism of ERG formation makes it 

possible to consider the visual system as linear one and describe ERG by means of 

stochastic process  
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where  tk ,  - impulse response of the visual system, 

 t ...101   - time of elementary impulses occurrence, 

k  - random variables characterizing impulse amplitudes. 

Generalization of the model (1) is linear stochastic process  

     
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  dtt ,                                     (2) 

where    is the stochastic process with independent increase which growth 

points coincide with moments k  in (1), and jump values are equal 
If we assume that the visual system is invariant in time i.e., for its impulse response 
     tt, , then the ERG model is the stationary linear stochastic process 

     
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  dtt                                            (3) 

In general case the impulse response depends not only on time variables  and t  
but on spatial coordinates. Taking into account mentioned above the EKG model is 

substantiated in the form of linear random field 
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where t,  are time parameters considered in models (1) – (3);  

s  is the point in space 3R , where visual system input is located;  

r  is the point of output location i.e., the point where ERG is observed;  

),,,( rst  is the impulse space-time transition function; 

),( s is nonuniform field with independent increases both in time and space 

characterizing the input signal intensity. 

In case when the visual system is invariant in time its model is linear uniform rela-

tively to spatial variables and stationary in time field.    
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Providing that in (4) or (5) the spatial coordinates s  and r   are fixed we derive 

the partial case of these models i.e., linear stationary process (3) or linear process (2) 

relatively.   
When there is no photostimulation the signal received by the sensor is represented 

as (3). Let us assume that the kernel    has finite duration denoted as 0 . When 

short-term photostimuli with period 0  are sent the visual system, then the inves-

tigated process is represented in the following way  

 

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 ),)(()()(  Idtt                                               (6) 
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   is stimuli feeding period,  

N  is stimuli amount in one session. 

Otherwise (6) is additionally represented as follows  
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where the second summand in (7) is the stationary linear system response sequence 

with impulse response    and influence of  -impulse sequence sent to its input. 

At the same time    is the kernel of linear stochastic process (3) to be estimat-

ed.   

It is obvious that  
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1  is  the cumulant of the random variable  1 . 

Taking into account the fact that during the synthesis of investigated signals regis-

tration it is possible to develop the filter intended to filter off the “constant compo-

nent” of the input signal, let us assume 0m  in (8).  

Thus, in order to estimate the process kernel (3) it is sufficient to estimate the 

mathematical expectation of the process (7) within the interval   0,0  .  

The following is proposed as estimation  
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Thus, the kernel statistical estimate (3) is 

     0

^

,0,  ttmt                                                           (10) 

Using statistical linearization method the authors investigated the systematic errors 

of analog-digital conversion of the input stochastic process from quantization and 

limitation of ADC operating range as well as the system instrument errors. 

5 Statistical methods of decision-making in ophthalmology 

problems 

Using statistical approach (Fig. 2) on the basis of ERG model the structural diagram 

of diagnostic unit (Fig. 3) is developed. 

Mathematical model construction

Determination of diagnostic features relatively to various patients state (on the basis of point 1)

Selection of diagnostic spaces (training) and formation according to experimental data the 

training sets corresponding to specified diseases (based on point 1)

Development of decision-making rules implemented on the basis of training sets by means of 
repeated ERG registration

 
Fig.2. Diagram of the statistical approach to diagnosis  

 

The first stage of the diagram (Fig. 2) – the development of ERG model was im-

plemented in point 1. 

Implementation registration

Estimation of diagnostic parameters

Formation of diagnostic spaces

Decision-making

 
Fig.3. Structural  diagram of  diagnostic unit 
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At the next stage new diagnostic features which make it possible to characterize 

patient’s status are determined. The angle between the kernel   which estimation 

technique is described above and certain function  0  corresponding HDL for as-

sumed healthy patient is proposed to be used as the first diagnostic feature. More 

specifically:  
    
   




0

0,
arccos                                                              (11) 

where      0, is the scalar product of functions    і  0  (it is considered 

that these functions are Hilbert space elements);   is the norm operator. 

Angle   is also used to determine and consider the registration errors of 

“screwup”. 

Besides the angle (11), the expansion coefficient of mathematical expectation es-

timation  tm  (10) into generalized Fourier series in the system of Chebyshev, Lager 

and Kravchuk basis functions are proposed to be used as ERG diagnosis features 

(Fig.4, 5, 6). (Хі,1 is ERG implementation, ff(і) is approximate function). 

 
Fig.4.a)spectrum of expansion coefficients in the system of Chebyshev basis func-

tions;  b) ERG implementation and approximate function 

 
Fig.5.а) spectrum of expansion coefficients in the system of Kravchuk basis func-

tions;     b) ERG implementation and approximate function 
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Fig.6. a) spectrum of expansion coefficients in the system of Lager basis functions;   

b) ERG implementation and approximate function  

 

According to Bessel inequality for Fourier series coefficients  
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where sa  is coefficient of expansion into ERG-signal,  ktf  is implementation of 

ERG-signal, i.e., the sum of squared coefficients of expansion into series does not 

exceed the signal energy. Thus at s  the expansion coefficient  0sa  (see 

Fig.4,a, Fig.5,a, Fig.6,a) and therefore the main information about the signal are in-

cluded only by the first series coefficients. 

Let us introduce function  

 
  









1

0

2

1

0

L

k

k

N

s

s

tf

a

NC                                                  (13) 

  10  NC  characterizing energy share carried by coefficients 1,0,  Nsas , of 

generalized Fourier series with relatively to the total signal energy. 

It is determined that in order to carry not less that 99% of energy by orthogonal ex-

pansion coefficients (Fig.7,a), it is sufficient to take 8-10 expansion coefficients into 

Fourier series using Chebyshev functions system; 35-40 coefficients are required for 

Lager functions and 45-50 for Kravchuk functions. The number of  orthogonal expan-

sion coefficients in Chebyshev system of basis functions appeared to be smaller than 

in other basis functions (used in the investigation) contributing to total energy 

(Fig.7,b). Therefore they are selected as diagnosis features of healthy visual analyzer. 

It should be noticed that other orthonormal basis were investigated but they 

showed worse results than Kravchuk functions, particularly def basis. 

The obtained results are used in order to carry out the visual system disease diag-

nosis.  
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Fig.7. Function dependency graphs 
)(NC

: 

1- system of Chebyshen basis functions;  

2- system of Lager basis functions; 

3- system of Kravchuk basis functions. 

6 Neumann-Pearson criterion  

On the basis of observation and analysis of assumed implementation  tx  it is 

necessary to decide what values (from the given interval of possible values) accept 

parameters  nllll ,...,, 21 , the observer is interested in. That is on the basis of observed 

implementation processing  tx  it is necessary to measure and estimate the required 

multidimensional parameter l . 

Let us consider the physical phenomenon mathematical model of which represents 

the stochastic process  t . 

Let us formulate incompatible hypotheses mHHH ,...,, 10  relatively to the un-

known model characteristics. The hypotheses testing task is to accept one of them 

according to the observed implementation results )(tx , Tt 0  the stochastic pro-

cess  t .   

Each decision is the result of statistical decisions based on observations. Let us 

denote by і the decision to accept hypothesis i , then mii ,0,  , where Г is the 

decision space. 

The decision space Г coincides with parameters size  , and elements of set Г are 

estimates of the unknown parameter   v . 

The decision selection rule   depicts the observation space X  on decision space 

Г: 


X . 

In hypotheses testing problem В j , mj ,0  according to sample x with size n  

each decision section rule   divides the space into 1m  non-overlapping areas: 

DГXxmjXx jj
n

j   ,,,,0,  

D is a set of decision selection rules.  

It is obvious the broader knowledge about the signal characteristics of healthy and 

sick patient the observer has, the easier the diagnosis problem is solved.  
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The estimated paremeter is random variable for observer. In such situation the 

most complete information about the possibilitis of parameter value as given by pro-

sterior probability density which is assumed probability dencity of parameter if given 

implementation  tx  is accepted.   

The diagnostics problem can be reduced to hypotheses testing on one parameter or 

set of one-dimensional or multidimensional distribution function of the observed ran-

dom value which can be stochastic process parameters.   

In order to carry out diagnostics let us introduce the following notations. Для про-

ведення діагностування введемо наступні позначення. Let us denote the random 

values vector by  mim  ,...,,...,1  each component of which mii ,1,   repre-

sents the corresponding information parameter. In such a case the vector of imple-

mentation m  is matrix 
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1

1
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                                            (14) 

where 
 k
m  is the a priori vector of random values in k-th experiment.  

nkmjx kj ,1,,1,,   is implementations matrix (a posterior matrix). Each solu-

tion corresponds to one experiment, the amount of lines – to experiments number, the 

number of columns – to informative parameters amount. 

Let us assume that components i  of vector m  are subjected to the normal dis-

tribution law. підлягають нормальному закону розподілу. 

Let us denote the average vector m value  by  : 

 mi  ,...,,...,1                                               (15) 

where ii  . 

Let us denote the correlation matrix of the same vector m  components by 

mnmim

iniii

ni

rrr

rrr

rrr

,...,,...,

.......................

,...,,...,

.......................

,...,,...,

1

1

1111

                                              (16) 

where 








 j

o

i

o

ijr  , . 

On the basis of the introduced notations the distribution density m  is as follows 

[6]  
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where М is correlation matrix (16); 

Y is the argument of distribution density which during specific implementation 

investigation accepts their values. 

While diagnosing specific patients the mathematical expectation of vector m  

accepts specific value actually defining (identifying) the disease.   

 

For normal (healthy) patient let us introduce vector  
        0000

,...,,..., mi  . 

Relatively with a certain disease existence 
        1111

,...,,..., mi  . 

While examining the patient for disease presence we put forward two hypotheses. 

0  - parameter in (3.43):  
)0(

 ,                         (18) 

1   - parameter in (3.43):  
)1(

 , 

where 
)0()1(

 . 

Further we consider hypothesis 
0

  as the main one and 
1

  as competitive кон-

куруючою. 

To make decision about the correctness of one of the hypotheses we use the theory 

proposed by Neumann and Pearson based on the analysis of likelihood ratio logarithm  

The essence of  Neumann-Pearson method is the selection of certain restriction C  on 

the set of permissible values for which at given restriction of the probability of the 

first-order error 0  the value of the second-order  error is minimized [6,7]. 

The function  mp   derived from (17) by replacing the nonrandom argument замі-

ною Y with random vector m  is called the likelihood function [6].  
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It accepts the random values as the function of random vector  
 k
m  and depends 

on the non-random vector parameter  , that is why we represent it as 

   mm pp  , . Likelihood ratio  ml   is called the functions relation at various 

values  defined in hypotheses formulation (18). 

Let us denote by 
 n  the logarithm of likelihood ratio  

 
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ln                                 (20) 



11 

where 

   nkk
m

k ,1,
2

1 )1()1(1)1()1()1()1(1)()( 






 



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

 






  
  ; 

   







 
1

,k
m  is the likelihood function for hypothesis 1 ; 

   







 
0

,k
m  is the likelihood function for hypothesis 0 . 

The sequence elements nkk ,1,)(   are Gauss magnitudes each linearly depend-

ent on components of matrix (14). That is  nkk ,1,)(   can be considered as discrete 

white noise or scalar Gauss stochastic process with discrete argument and independ-

ent values [6,7]. 

Decision making connected with the hypothesis selection (18) is characterized by 

probability of the first and second order errors.  

The first order error occurs when the basic hypothesis 0  is rejected in case if it is 

true  

 01                                                              (21) 

where  -is the level of criterion significance. 

The second order error– hypothesis 0  is accepted when hypothesis  1  is true 

 10                                                               (22) 

where  1  is test strength. 

The main task in hypothesis acceptance is the selection on the set of permissible 

process values 
)(n

e  of certain threshold С for which at the given value   , fixed 

sample volume n  and the smallest   one can conclude that  hypotheses 0  at 

Cn ln)(   and  1 at Cn ln)(   occur. 

Taking into account (19) the criterion of hypothesis 0  acceptance is as follows  

Km 



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

   )0()1(1
~
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and hypothesis 1   
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                                         (24) 

where 

    
   


















n

k

n

k

n

k

n

k

k
m

k
i

kk
m

nnnn
1 1 1 1

)()()(
1

)(
~ 1

,...,
1

,...,
11

                   (25) 

 k
i  is the element of matrix (14). 

The formulae for calculation of the threshold value K  and sample volume 

n  are given from  [6]: 
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 
 

        T

UU

UUk
K 







 






 



  011012

2

1

2 


                   (26) 

 
2

 UU
n


                                                    (27) 

where   

        T








 






   01101

2
                                         (28) 

 UU ,  are quantiles of normal distribution. 

Let us consider the example of the above mentioned approach application for oph-

thalmodiagnostics based on the parameters of orthogonal decomposition of ERG sig-

nal.  

The diagnosis is carried out in three stages: at the first stage we determine the di-

agnostic features corresponding to different patients states; at the second stage we 

form according to experimental data training sets (images) corresponding to specific 

matrix patients states; at the third stage we develop diagnostics rules make decisions 

according to training sets and recorded data.  

During the training course ERG of healthy and sick patients (it is not necessary to 

specify pathology type) were investigated. ERG registration system described in pa-

per [4,8] was used for experiments.  

Learning  outcomes: 

- vector of mathematical expectations of informative parameters foe hy-

pothesis Н0 (healthy patient): 
 

 
 9.64.494.469.231.799.571.567.1464.555.339

,... 101

0



 aa
 

 

- vector of mathematical expectations of informative parameters foe hy-

pothesis Н1 (sick patient): 
   
 3.125.466.304.326658.277.594.1057.519.170

,... '
10

'
1

1



 aa
 

Correlation estimates matrix  
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7.03.06.01.04.02.04.04.22.13.6

3.00.14.09.04.09.03.03.29.01.6

6.04.02.13.01.15.04.09.23.18.7

01.09.03.01.13.01.11.01.28.04.5

4.04.01.13.03.16.35.58.24.17

2.09.05.01.16.37.11.0351.12.8

4.03.04.01.0551.06.17.18.18.3

4.23.29.21.28.25.37.1176.642

2.19.03.18.04.11.18.16.65113

3.61.68.74.572.88.34213120





























































  

 

Setting 05.0   according to (26–28) we get 48.22   38.4n  (accepting 

5n ), 04.5K . 

On the basis of learning outcomes let us carry out diagnostic experiment. 

We get: 

 9.76.368.353.148.607.602.431.139258.26010 X , 

where 10X is implementation; 

 KX
T








  6.173
)0()1(1

10 . Therefore we should accept hypothesis Н0 

– the patient is visual. 

It should be noted that the considered approach for problems solution related to 

synthesis of mathematical model of investigated signals with parameters which can be 

used as diagnostic features, methods of these parameters determination, diagnostic 

criteria construction are implemented as software package included in the developed 

information system for ophthalmodiagnosis by electroretinograms. 

7 Conclusions 

1. The mathematical model in the form of linear stochastic process is substantiated on 

the basis of physical-chemical processes occurring in the visual system and mecha-

nism of retina biopotentials generation.  

2. It is proposed to use the coefficients of orthogonal decomposition of ERG imple-

mentations in the system of basis discrete argument functions (Chebyshev, 

Kravchuk,Lager) as diagnostic features.  

3. In order to diagnose the visual analyzer disease the statistical decision-making 

theory is used. Criteria for decision-making according to informative features of 

ERG implementations (Neumann-Pearson criterion) is selected.  

4. The proposed approach is implemented as application program package. 
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