
iStar2.0-OWL: an Operational Ontology for iStar

Camilo Almendra1,3, Carla Silva1, Vitor Souza2, and Renata Guizzardi2 and
César Bernabé2

1 Centro de Informática – UFPE
{cca3,ctlls}@cin.ufpe.br

2 Departamento de Informática - Centro Tecnológico – UFES
{vitorsouza,rguizzardi}@inf.ufes.br, cesar.hber@gmail.com

3 Campus Quixadá – UFC

Abstract. Requirements engineering comprises activities for discovery,
analysis and specification of users’ needs and goals for a software system.
In an early phase of software development, it is essential not to discard
alternatives until some reasoning or evaluation is taken. Goal-oriented
requirement engineering provides means for dealing with goals, needs
and its alternative options for realization. However, analysis of large scale
or complex systems requirements may be hard to be accomplished and
error prone. Knowledge-based systems are a good tool to assist analysts
in carrying out such analysis. This work proposes an operational ontology
to represent iStar 2.0 models using OWL-DL.

1 Introduction

Requirements engineering (RE) activities can be improved using ontologies, par-
ticularly for reducing ambiguity, inconsistency and incompleteness [4]. Ontology
is an explicit specification of a shared conceptualization that holds in a particu-
lar context [11]. It aims to organize domain knowledge over individuals, objects,
types, attributes, relationships and functions. Once organized in a knowledge
base, this information can be easily shared among people involved in the con-
text of the ontology, such as users, customers, requirements analysts, architects
and any other personnel involved in Software Engineering (SE).

Two recent literature reviews bring interesting information on the use of
ontologies in RE. In [4], Dermeval et al. identify that most studies target the
reduction of ambiguity, inconsistency and incompleteness. In second place, there
were studies purposing requirements maintenance and evolution, and, in third,
studies focusing in domain knowledge representation. In [12], Valaski et al. ex-
plore the function of ontologies in RE. The review found that the intended func-
tion is well distributed in categories: i) Structuring and recovery of knowledge,
ii) Verification and validation, iii) Support to understand/identify concepts, iv)
Control/share of vocabulary and v) Integration and transformation models. In
the context of requirements modeling, ontologies are an effective approach to
validate the consistency of models against a modeling language metamodel and
formation rules.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons 
License Attribution 4.0 International (CC BY 4.0).



2 C. Almendra et al.

One of the most used Goal-Oriented Requirements Engineering (GORE) lan-
guages which also attracts a lot of attention from the research community is i*
(iStar). Recently, a steering committee of experts reviewed and released a new
version of the language, renamed iStar 2.0 [3]. The new version release aims at
facilitating the dissemination of the language by newcomers, by proposing the
standardization of constructs and syntax. This work contributes to this commu-
nity by presenting a formal representation of iStar 2.0 constructs in description
logics. Our purpose is to provide requirements engineers with a knowledge base
system that can be used to enhance shared understanding and validate consis-
tency of goal models.

This article is organized as follows. Section 2 presents related work. In Section
3, we present the methodology used to build the ontology and its specification.
In Section 4, we discuss the implementation of the ontology, languages and tools
used, and show an illustrative scenario of use. Finally, we present our conclusions.

2 Related work

Formal representations and ontologies for GORE have been proposed in order
to discuss knowledge sharing and reasoning for goal models. Giorgini et al. [6]
present a predicate logic-based approach to represent goals and their refinements
through AND/OR relationships, and provide qualitative reasoning for goal satis-
fiability assessment. Their approach uses an algorithm for satisfiability evidence
propagation. Borgida et al. [2] use description logics to formally represent a sub-
set of i*’s seminal version, and present evidence-based propagation axioms for
goal satisfaction assessment. Negri et al. [9] discuss similarities and divergences
among popular goal modeling approaches, and propose a unifying domain ontol-
ogy. They provide integration with foundational ontologies and seek to clarify
the semantics of GORE. However, these works are not focused on providing
a ready-to-use ontology implementation. Najera et al. [8] address the problem
of integration of iStar variants, before the release of iStar 2.0. They proposed
a methodology that uses OWL ontologies as means to integrate different iStar
variants. They present an illustrative scenario which shows the transformation
of the iStar metamodel into OWL classes and properties. The work did not ex-
plore some features of OWL-DL, such as the definition of Domain and Range
for object properties. We find these features useful to implement basic model
validation, as illustrated in Section 4.1. The iStar 2.0 language guide provides a
unified metamodel and set of formation rules. In this work, we seek to formalize
these rules.

3 Ontology Specification

In this work, we seek to provide a formal representation for the full scope of iStar
2.0 language guide. We followed the METHONTOLOGY process [5] to design
and implement the iStar2.0-OWL. The steps are: (i) Define the scope of ontol-
ogy and its intended use in GORE; (ii) Conduct literature review to identify



iStar2.0-OWL: an Operational Ontology for iStar 3

knowledge sources, such as foundational ontologies or related domain-specific
ontologies; (iii) Conduct iterative cycles of conceptualization, integration, im-
plementation and verification of ontology prototypes; (iv) Demonstrate ontology
usage through an illustrative scenario of requirements analysis and specification.

iStar2.0-OWL is classified as a Task-Specific Ontology, because it embodies
just the conceptualizations that are needed for carrying out a particular task [11].
The main purpose of the ontology is to validate the consistency of iStar 2.0 goals
models. The main source used in this work was iStar 2.0 language guide [3], it
provides the conceptual model and constraints. The ontology is implemented in
OWL-DL (see discussion in Section 4). The intended end-users are requirements
analysts working on elicitation and analysis that need to assess consistency of
iStar 2.0 models. The intended scenarios of use are: i) Register actors and their
intents, ii) Register decompositions and abstractions, iii) Register dependencies
between actors, and iv) Evaluate consistency of models. We guided the speci-
fication by stating a set of competency questions that the ontology should be
capable of answering based on the models provided. Additionally to answer this
questions, the ontology implementation shall be able to identify violations of
language guide in the models. These are some of the competency questions used
to guide the design of iStar2.0-OWL (see complete list in [1]):

1. Which are the actors of the system?
2. Which are the actors that participate in another actor?
3. Which are the actors that are a kind of another actor?
4. Which are the goals intended by an actor?
5. Which are the qualities expected by an actor?
6. Which are the dependencies of an actor with other actors?
7. Which are the intentional elements that contribute to a quality?
8. Which are the qualities related to a task, goal or resource?
9. Which are the resources needed by a task?

10. Which are all the refinements and sub-refinements for a goal or task?

4 Ontology implementation

The ontology is implemented using the description logics language OWL-DL4,
the rule language SWRL [7], and the query language SQWRL [10]. The ontology
was developed using Protégé5 as supporting tool. The motivation for choosing
OWL-DL was two-fold. A comparison analysis of knowledge representation al-
ternatives for goal models indicated OWL as extensible and sufficiently legible,
and with good tool support [2]. Also, a literature review indicated OWL as the
most common language used for RE-related ontologies [4]. There are a variety
of reasoners available to perform evaluation of OWL ontologies, and Protégé
tool provides a design environment to build OWL ontologies and to integrate a
reasoner. SWRL extends OWL ontologies with an abstract syntax that allows

4 https://www.w3.org/OWL/
5 http://protege.stanford.edu/



4 C. Almendra et al.

Table 1. Partial definition and representation of concepts and relationships

Definition Representation

Actors are active, autonomous entities that aim
at achieving their Goals by exercising their
know-how, in collaboration with other actors.

Class: Actor

Actors’ intentionality is made explicit through the
actor boundary which is a container to hold what
she wants.

Property: wants

isA association represents the concept of general-
ization/specialization.

Property: isA

SubPropertyOf: isAssociatedTo

Intentional elements are the things actors
want.

Class: IntentionalElement

Goal is a state of affairs that the actor wants to
achieve.

Class: Goal

SubClassOf: IntentionalElement

Quality is an attribute for which an actor desires
some level of achievement.

Class: Quality

SubClassOf: IntentionalElement

Task represents actions that an actor wants to be
executed, usually with the purpose of achieving
some goal.

Class: Task

SubClassOf: IntentionalElement

Resource is a physical or informational entity
that the actor requires in order to perform a
task.

Class: Resource

SubClassOf: IntentionalElement

specification of semantic rules. SQWRL is based on SWRL and provides SQL-
like operators for extracting information from OWL ontologies. As both SWRL
and SQWRL are designed to extend OWL expressiveness and are integrated in
the Protégé tool, their selection was straightforward.

For ease of reading, we present the ontology definitions and rules together
with their representation. The complete ontology is available at [1]. Table 1
partially presents representation for the concepts and relationships in form of
OWL axioms (here written in Manchester syntax for legibility). Table 2 par-
tially presents the semantic rules that complement the iStar 2.0 metamodel.
The complete version of Tables 1 and 2 can be found in [1].

iStar 2.0 language specifies Intentional Elements as things that Actors want.
However, in the specification of the subclasses Quality and Resource, the terms
used are desire and require, respectively. We prefer to keep the wants rela-
tionship for all subclass of Intentional Elements, as it is specified in the visual
metamodel of the language. However, further discussion on the semantics of
these relationships are required.

The semantic rules were implemented using SWRL rules, SQWRL queries,
property settings in OWL, or a combination of them. In case of OWL property
setting and SWRL rules, they are handled as axioms by the reasoner. In cases



iStar2.0-OWL: an Operational Ontology for iStar 5

we have to use SQWRL queries, we designed them to return empty results if the
model is consistent. If the query returns any element of the model, there is an
inconsistency related to the returned elements.

SWRL rules have the form of a implication from an antecedent clause to
a consequent [7]. The antecedent is a assertion over existing individuals, and
the consequent is the inference to be applied if a set of individuals match the
antecedent. The assertion and the inference are written using conjunction of
atoms, each atom can be a class, a property or a built-in function. Variables
are indicated using a question mark (e.g., “?x”). For example, a rule asserting
that the composition of parent and brother properties implies the uncle property
would be written in the form:

hasParent(?x,?y), hasBrother(?y,?z) -> hasUncle(?x,?z)

SQWRL queries can filter and retrieve individuals in OWL ontologies [10].
The query is formed by an assertion over existing individuals, using SWRL
syntax, and a select clause. For example, a query to retrieve every individual
that is more than 17 years-old would be written in the form:

Person(?p), hasAge(?p, ?age), swrlb:greaterThan(?age, 17)

-> sqwrl:select(?p)

4.1 Model validation example

The first step to validate an iStar 2.0 model is to transform it to individuals
(assertions) in OWL. These individuals are then validated together with the
iStar2.0-OWL axioms (Table 1) and rules (Table 2). The transformation needs
only to consider the concrete (visual) syntax of the models. The mapping is sim-
ple, each concrete element of the language is associated with a single Class, and
each concrete relationship is associated with a single Object Property. We use
as illustrative scenario the Travel Reimbursement model from [3]. Consider the
part of the model that relates the “No Errors” quality and “Request Prepared”
goal (Figure 1).

Fig. 1. Transformation of elements and relationships into OWL assertions.

The insertion of the individuals described above, together with iStar2.0-
OWL, does not generate any inconsistencies. The list of individuals can be gen-
erated directly from a modeling tool or by an intermediary tool that reads the
output of the modeling tool and transforms it to OWL individuals.



6 C. Almendra et al.

Table 2. Partial definition and representation of rules

Definition and representation

Only roles can be specialized into roles.
R: Role(?r2), isA(?r1,?r2) -> Role(?r1)

Only general actors can be specialized into general actors.
R: GeneralActor(?g2), isA(?g1,?g2) -> GeneralActor(?g1)

Agents cannot be specialized via is-a, as they are concrete instantiations.
Q: Agent(?a1), isA(?a2,?a1) -> sqwrl:select(?a2)

Dependency relationships should not share the same dependum, as each dependum
is a conceptually different element.

Q: Dependency(?d1), Dependency(?d2), differentFrom(?d1, ?d2),

hasDependum(?d1,?d3), hasDependum(?d2,?d3) -> sqwrl:select(?d1, ?d2, ?d3)

In a dependency D, if the dependerElmt x exists, then the actor that wants x is the
same actor that is D’s depender.

R: Dependency(?d1), hasDependerElmt(?d1,?e1), hasDepender(?d1,?a) ->

wants(?a,?e1)

P: Property wants set as inverse functional (isWantedBy )

In a dependency D, if the dependeeElmt y exists, then the actor that wants y is the
same actor that is D’s dependee.

R: Dependency(?d1), hasDependeeElmt(?d1,?e1), hasDependee(?d1,?a) ->

wants(?a,?e1)

The depender and dependee of a dependency should be different actors.
Q: Dependency(?d), hasDepender(?d,?a1), hasDependee(?d,?a2),

sameAs(?a1,?a2) -> sqwrl:select(?d, ?a1)

Legend: R: SWRL rule, Q: SQWRL query, P: OWL property setting.

Suppose a user changes the type of “NoErrors” to Goal. The qualifies prop-
erty is defined to have Quality class as Domain (that is, if an individual A
qualifies other individual B, then A is classified as sub-class of Quality). In this
scenario, an inconsistency is found and explained as follows:

DisjointClasses: Goal, Quality, Resource, Task

NoErrors qualifies RequestPrepared

qualifies Domain Quality

NoErrors Type Goal

As the qualifies property is defined to have as Domain the Quality class, and
Goal and Quality are disjoint, an inconsistency is found.

5 Conclusions

This work presented the specification and implementation of an ontology for
representation of iStar models. iStar 2.0 language was adopted as basis for ex-
tracting concepts, relationships and semantic rules. Concepts and relationships



iStar2.0-OWL: an Operational Ontology for iStar 7

were formalized in class and properties axioms. Rules were in part represented
in axioms, but some required the use of SWRL (Semantic Web Rule Language)
for formalization. Some of the language rules could not be defined as axioms
or SWRL rules, so they must be represented using query language in future
works. We hope this work can contribute to the evolution and adoption of iS-
tar language standard. As future work, we plan to complete the definition and
implementation of the concepts using the semantics proposed by Negri et al. [9].

Acknowledgements

The authors thank CNPq for funding the execution of this work.

References

1. Almendra, C., Silva, C., Souza, V., Guizzardi, R., Bernabé, C.: Supplementary
material (2019), http://www.cin.ufpe.br/~cca3/istar20ontology/

2. Borgida, A., Horkoff, J., Mylopoulos, J.: Applying knowledge representation and
reasoning to (simple) goal models. In: 2014 IEEE 1st International Workshop on
Artificial Intelligence for Requirements Engineering (AIRE). pp. 53–59 (Aug 2014)

3. Dalpiaz, F., Franch, X., Horkoff, J.: istar 2.0 language guide. arXiv preprint
arXiv:1605.07767 (2016)

4. Dermeval, D., Vilela, J., Bittencourt, I.I., Castro, J., Isotani, S., Brito, P., Silva,
A.: Applications of ontologies in requirements engineering: a systematic review of
the literature. Requirements Engineering 21(4), 405–437 (Nov 2016)

5. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontologi-
cal art towards ontological engineering. In: Proc. AAAI Spring Symposium. pp. 33–
40. University of Standford, American Asociation for Artificial Intelligence (1997)

6. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. In: Proceedings of the 21st International Conference on Conceptual Mod-
eling. pp. 167–181. ER ’02, Springer-Verlag, London, UK, UK (2002)

7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl:
A semantic web rule language combining owl and ruleml. W3C Member submission
21(79), 1–31 (2004)

8. Najera, K., Martinez, A., Perini, A., Estrada, H.: An ontology-based methodology
for integrating i* variants. In: iStar 2013–Proceedings of the 6th International i*
Workshop. p. 1 (2013)

9. Negri, P.P., Souza, V.E.S., de Castro Leal, A.L., de Almeida Falbo, R., Guizzardi,
G.: Towards an ontology of goal-oriented requirements. In: Proceedings of 20th
Iberoamerican Conference on Software Engineering (CIbSE 2017) (2017)

10. O’Connor, M., Das, A.: Sqwrl: A query language for owl. In: Proceedings of the
6th International Conference on OWL: Experiences and Directions - Volume 529.
pp. 208–215. OWLED’09 (2009)

11. Schreiber, G.: Knowledge engineering. Foundations of Artificial Intelligence 3, 929–
946 (2008)

12. Valaski, J., Reinehr, S., Malucelli, A.: Which roles ontologies play on software
requirements engineering? a systematic review. In: Proceedings of the International
Conference on Software Engineering Research and Practice (SERP). pp. 24–30.
The Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), Athens (2016)


