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Objective Hierarchical Temporal Memory (HTM) has been shown to adapt
well to changing input patterns, making it a natural building block for a Re-
inforcement Learning (RL) agent that adapts to evolving tasks quickly. In this
paper, we design, implement and experimentally evaluate HTMRL: the first such
agent, built with nothing but HTM.

Background In RL, an agent learns how to behave in an environment [2]. This
is usually modelled as a Markov Decision Process (MDP): the 4-tuple

(S,A, P,R) (1)

where S is the set of states, A is the set of actions, P models which state will be
reached after taking an action, and R defines the reward after such a transition.
The main goal of an agent is then to define a policy π, deciding which action to
take in each state.

HTM is a computational model of the human neocortex, originally proposed
by Jeff Hawkins [1]. One of the core aspects of HTM is its strict biological
plausibility, meaning that any feature that could not plausibly be implemented
in the neocortex will not be allowed in the HTM model. All data within the
model is encoded as Sparse Distributed Representations (SDRs), binary data
structures with only a limited number of enabled bits (i.e., with value 1). One of
the main components of HTM is the spatial pooler, which reorganises incoming
SDRs to produce outputs of always the same size and sparsity, and to ensure
the available capacity is optimally utilised. To achieve this, the spatial pooler
maintains synapses between some pairs of input and output bits. These synapses
can carry a 1 signal from input bit to output bit, with output bits receiving
relatively many signals adopting this 1 value. Synapses carrying such signals to
these activated output bits grow stronger while others grow weaker, eventually
becoming unable to carry a signal, ensuring that similar inputs will lead to
similar outputs.
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Fig. 1. Overview of the HTMRL system, with coloured bits/cells being enabled/active,
illustrated with a contextual bandit environment where the state is the bandit’s index.

HTMRL Our proposed HTMRL algorithm, summarised in Figure 1, uses only
a spatial pooler, with minimal modifications. HTMRL converts any input into
an SDR of, by default, 2048 bits. To map this to one of |A| actions, we simply
subdivide the SDR into |A| equally sized bins, selecting the bin containing the
most 1 bits as the action to take. Synapse growth is then scaled with the reward
signal. As such, actions leading to poor rewards become less likely to be selected
on future similar inputs, and vice versa. HTMRL can explore rarely selected
actions through the boosting mechanism also present in core HTM theory, which
amplifies incoming signals of rarely activated output bits.

Experiments and evaluation We evaluate our HTMRL implementation in
an environment with many multi-armed bandits, each giving a positive reward
on only a single arm. One randomly selected bandit is presented to the al-
gorithm at every step. With 4-armed bandits, the algorithm could learn over
1000 bandits before becoming prohibitively slow in our implementation. With a
fixed set of 20 bandits, HTMRL could learn up to 1024 arms per bandit, which
is the maximum number of actions representable in its base configuration. To
evaluate performance in changing environments, we experiment with a bandit
whose arms’ rewards are sampled from normal distributions. HTMRL reaches
near-optimal performance in a number of steps similar to an ε-greedy learner.
The distributions are then randomly reinitialised, after which HTMRL reaches
near-optimal performance just as fast as before, while ε-greedy learners struggle
to adapt. We also show that by shuffling the arms instead of fully reinitialis-
ing them, HTMRL adapts even faster, meaning it can leverage its knowledge of
previous phases, making it a promising approach for Meta-RL applications.
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