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Abstract. We present Deep Quality-Value Learning (DQV), a novel
model-free Deep Reinforcement Learning (DRL) algorithm which learns
an approximation of the state-value function (V ) alongside an approxi-
mation of the state-action value function (Q). We empirically show that
simultaneously learning both value functions results in faster and better
learning when compared to DRL methods which only learn an approxi-
mation of the Q function.
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1 Preliminaries

We formulate a Reinforcement Learning (RL) setting as a Markov Decision Pro-
cess (MDP) consisting of a finite set of states S = {s1, s2, ..., sn}, actions, A,
and a time-counter variable t [5]. In each state st ∈ S, the RL agent can per-
form an action at ∈ A(st) after which it transits to the next state as defined
by a transition probability distribution p(st+1|st, at). At each transition from
st to st+1 the agent receives a reward signal rt coming from the reward func-
tion <(st, at, st+1). The actions of the agent are selected based on its policy
π : S → A that maps each state to a particular action. For every state s ∈ S,

under policy π its value function is defined as: V π(s) = E

[∑∞
k=0 γ

krt+k

∣∣∣∣st =

s, π

]
, while its state-action value function as: Qπ(s, a) = E

[∑∞
k=0 γ

krt+k

∣∣∣∣st =

s, at = a, π

]
. Both functions are computed with respect to the discount fac-

tor γ ∈ [0, 1]. The goal of an RL agent is to find a policy π∗ that realizes
the optimal expected return: V ∗(s) = max

π
V π(s), for all s ∈ S and the opti-

mal Q value function: Q∗(s, a) = max
π

Qπ(s, a) for all s ∈ S and a ∈ A. Both

value functions satisfy the Bellman optimality equation as given by V ∗(st) =

max
a

∑
st+1

p(st+1|st, at)
[
<(st, at, st+1)+γV ∗(st+1)

]
for the state-value function,

and by Q∗(st, at) =
∑
st+1

p(st+1|st, at)
[
<(st, at, st+1) + γ max

at+1

Q∗(st+1, at+1)

]
,
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for the state-action value function. In what follows we show how to learn an
approximation of both value functions with deep learning methods [2].

2 The Deep Quality-Value (DQV) Learning Algorithm

Deep Quality-Value (DQV) Learning learns an approximation of the V function
alongside an approximation of the Q function. This is done with two neural
networks, respectively parametrized as Φ and θ, and two objective functions that
can be minimized by gradient descent. Such objectives adapt two tabular RL
update rules presented in [7] and result in the following losses for learning the Q

and V functions: L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt+γV (st+1;Φ−)−Q(st, at; θ)

)2]
;

L(Φ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV (st+1;Φ−) − V (st;Φ)

)2]
. Both losses are

computed with respect to the same target (rt + γV (st+1);Φ−), which uses an
older version of the V network (Φ−) for computing the temporal-difference errors.
Minimizing these objectives is done over batches of RL trajectories (〈 st, at, rt,
st+1〉) that get uniformly sampled from a memory buffer D. Our results [4],
presented in Fig. 1, show that DQV learns significantly faster and better than
DQN [3] and DDQN [6] on several DRL test-beds coming from the Open-AI-Gym
environment [1]. This empirically highlights the benefits of learning two value
functions simultaneously and makes DQV a new faster synchronous value-based
algorithm present in DRL.
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Fig. 1. The results obtained by DQV on several RL environments coming from the
Open-AI-Gym [1] benchmark. DQV learns significantly faster than DQN and DDQN on
all test-beds. Results adapted from [4].
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