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Machine learning techniques have made great progress in recent years, obtain-
ing state of the art performance in areas such as natural language processing [3]
as well as image and speech recognition [2]. However, the theoretical properties
of the deep neural networks responsible for this success remain poorly under-
stood. At present, there is no theory which can satisfactorily explain the success
of deep learning and many open questions remain [6]. A peculiar example of
this lack of theoretical understanding is the existence of so-called adversarial
perturbations [1]. These are small modifications to the inputs of a model which
can drastically change its output, even though the alterations are completely
insignificant.

In this work, we propose a novel defense against adversarial manipulation
which aims to scale to realistic problems and provide non-trivial robustness. It
is based on methods from conformal prediction and therefore enjoys frequentist
guarantees of validity [4]. Empirical evaluations as well as theoretical results
also support the idea that our defense can be scaled to realistic models. We
evaluate our method against existing (oblivious) adversarial attacks as well as a
white-box attack specifically designed to fool the MultIVAP. We find that these
attacks have limited success when the norms of the perturbations are reasonably
constrained.

The basic construction of the MultIVAP is as follows. Given any machine
learning classifier, we use the inductive Venn-ABERS predictor algorithm by
Vovk et al. [5] in a one-vs-all manner in order to obtain pairs of probabilities
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form lower and upper bounds on the probability that the given sample belongs
to class i. These probabilities are then processed into a multi-probabilistic pre-
diction by solving a mixed integer linear program (MILP). The output of the
MultIVAP is the solution to this optimization problem, which consists of a vec-
tor of bits (α1, . . . , αK). Here, αi indicates that we can accept the label i for
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the given input at the ε significance level, where ε ∈ [0, 1] is a user-specified
parameter.

Task η ε Accuracy (baseline) Adversarial error

Fashion-MNIST 0.3 24.20% 94.22% (93.84%) 18.96%
CIFAR-10 0.03 20.77% 83.36% (81.51%) 27.55%
Asirra 0.03 41.86% 88.56% (89.04%) 47.57%
SVHN 0.03 25.23% 96.81% (96.40%) 9.85%

Table 1: Results of the MultIVAPs on the adversarial white-box attack.

Table 1 shows experimental results when we evaluate the MultIVAP on four
different image recognition tasks. For each task, we report several metrics: η, the
`∞ norm bound on the magnitude of the perturbations; ε, the significance level
at which these results were obtained; accuracy of the MultIVAP and accuracy of
the underlying model; the adversarial error of the MultIVAP. Note that on three
out of four tasks, the MultIVAP increases the accuracy of the classifier. Also, the
adversarial error of the MultIVAP is significantly lower than that of unprotected
machine learning classifiers evaluated against adaptive white-box attacks (these
are almost invariably close to 100%). The computational overhead we incurred
with this construction was roughly linear in the number of classes of the task.

We conclude that the MultIVAP is a computationally efficient procedure for
protecting multi-class classifiers against adversarial perturbations. We make our
code available at https://github.com/saeyslab/multivap.
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