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In recent years, advances in the field of Deep Reinforcement Learning (DRL)
have enabled artificial agents to obtain superhuman performance on various
tasks, given enough interactions with the environment [7,4,12]. While the state
of the art in DRL keeps improving rapidly, most algorithms result in agents that
generalize badly, performing well only on the single task they were trained on [9].
Simultaneously, while most existing DRL transfer learning literature considers
model-free RL algorithms [15,10,11,9], its counterpart model-based RL, in which
agents explicitly model their environment rather than directly predicting state-
action values or policies, has shown great successes, especially in recent years
[3,2,8,1,5]. Despite these successes, however, the feasibility of transfer learning
with these approaches remains relatively under-explored. As it follows from intu-
ition that representing multiple environments in a single model may help express
their similarities and differences and may therefore benefit transfer learning, this
thesis explicitly investigates the feasibility of model-based DRL as a basis for
(life-long) transfer learning.

As a starting point for this investigation, a state-of-the-art model-based ap-
proach [2] is extended to an iterative version that continually alternates be-
tween a model training and data collection phase, dubbed Iterative World Models
(IWM). It first collects a very limited set of observations using a random policy,
and then supervisedly trains a VAE (to compress the observations) and LSTM
(to predict the next observation given the current compressed observation and
chosen action). The predictions of these World Models are then used to train a
deep Q-Network [7] to choose the appropriate action. The updated models are
used to collect more on-policy observations from the environment, after which
the cycle is repeated.
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This IWM agent is trained sequentially on different variations of the Catcher
[13] environment, each varying the angular direction of the falling fruit, each
time re-training the weights obtained from the previous environment.
Following [14], five different metrics are reported, most importantly the maxi-
mum obtained reward, the cumulative reward over each experiment and the time
to threshold, measuring the average number of steps required for the agent to
reach respectively 75% and 95% of the maximum possible reward. As a baseline
for comparison, a separate IWM agent is trained from scratch on each environ-
ment individually.

As expected, re-training the existing agent models on a new environment
facilitates transfer, since the environment dynamics largely remain similar. In
particular, an average increase in cumulative reward of 136% is observed rel-
ative to training an agent from scratch on each environment, and an average
reduction of 72% is observed for the time to threshold (i.e. a 72% increase in
sample efficiency). No transfer is observed in terms of maximum obtained re-
ward, as both the agent trained from scratch and the sequentially trained agent
eventually obtain the maximal reward.
However, if the agent is then again re-trained on a different variation of the en-
vironment with both visual differences and an inverted reward structure (where
the player has to dodge the fruit rather than catching it), no significant transfer
is observed at all. Investigations indicate that the necessary re-training of the
VAE effectively destroys all previous knowledge. To overcome this, an extension
to the algorithm is introduced, Iterative World Models with Persistent Mem-
ory (IWM-PM), which trains the agent not only on the current environment,
but also on its “memories” of all previous environments combined. Experiments
show this extension indeed has the desired effect, substantially decreasing the
amount of change in VAE encodings after training on a new environment. Sub-
sequently, significant transfer is then observed for this new environment, albeit
negative with a 36% decrease in cumulative reward and 50% increase in time to
threshold, which is not surprising given the inverted reward structure of this new
environment relative to all previous environments.
Additionally, on the environments with different angles, this extension further
increases cumulative reward by 158% and reduces time to threshold by 88% on
average compared to an agent trained from scratch.

In conclusion, because the proposed IWM-PM algorithm can be considered a
combination of several state-of-the-art model-based algorithms [2,3,6,5], the con-
ducted experiments show that model-based DRL indeed has strong potential for
transfer learning. While the experiments conducted for this thesis were limited
and additional research is required before any strong conclusions can be drawn,
recent work on model-based DRL gives no reason to believe that these results
cannot be extended to more complex environments. Additionally, model-based
transfer learning approaches may have several preferable properties to prominent
model-free transfer algorithms such as Actor-Mimic and Progressive Neural Net-
works [15,10,9,11].
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