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Ordinal classification problems naturally appear in many research areas, such
as medical research [2] and social sciences [3]. Machine learning methods deal
with large manually-labeled datasets for solving these problems. Unfortunately,
the performance of any machine learning classification method is usually limited
by the amount of absolute information (i.e., examples with given class labels)
and it is usually time-consuming and costly to collect a large amount of absolute
information. Fortunately, gathering a large amount of additional relative infor-
mation (i.e., preference orders for couples of examples) is much easier. Hence, the
main challenge of this work is to combine a small amount of absolute information
and a large amount of relative information for ordinal classification.

The importance of considering additional information has already been val-
idated [6]. For example, in the field of soft-label classification [7,8,10], a basic
assumption is that there is some uncertainty associated with the class label that
should be associated with each of the examples [6]. Experts are invited to assign
class labels to examples and provide the corresponding additional information in
the form of probability scores reflecting how certain they are on the class label
that should be specified. A natural way of solving the soft-label classification
problem is to modify classical machine learning methods, e.g., logistic regression
and support vector machines. Inspired by this idea, for our problem setting in
which there is a small amount of absolute information and a large amount of rel-
ative information, we modify classical machine learning methods by combining
both types of information.

Different methods have been proposed for solving ordinal classification prob-
lems. In addition to some classical methods [4], such as naive methods, ordinal
binary decomposition methods and threshold methods, distance metric learning
methods [1] are very popular. For example, Nguyen et al. [5] recently considered
ordinal information as local constraints and proposed a method that incorporates
these constraints into a distance metric learning task. Their experiments demon-
strated that exploiting the order between class labels could lead to learning a
better distance metric.
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In this paper, firstly, we modify some classical machine learning methods
by incorporating additional relative information. Subsequently, similarly to the
assumption that close examples are assumed to have the same class label, we
assume that close couples tend to have the same order relation, an assumption
that has been successfully validated in previous work [9]. Inspired by the work
of Nguyen et al. [5], we learn a more suitable distance metric than the standard
Euclidean distance metric by imposing different distance constraints for absolute
and relative information, and incorporate the learned distance metric into the
method of k-NN proposed in [9] for ordinal classification. Finally, we modify
and test some classical machine learning methods and compare them with the
proposed distance metric learning method on some benchmark datasets. The
experiments show the benefits of considering additional relative information.
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