
SOGrounder: Modelling and Solving
Second-Order Logic (Extended Abstract)?

Matthias van der Hallen1[0000−0003−1893−9369]?? and Gerda
Janssens1[0000−0002−7836−1856]

KU Leuven: Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee (Leuven), Belgium

firstname.lastname@kuleuven.be

1 Introduction

A knowledge representation (KR) system allows declarative modelling of real-
world knowledge, supporting one or more inferences to be performed on the
model, e.g. satisfiability checking, model expansion or optimisation of problems
within the knowledge domain. While many KR systems find their roots in logic,
most of these systems restrict themselves to first-order logic over finite domains.

In the following sections, we present a KR system covering second-order logic,
with an implementation based on the well-known, two phased ground-and-solve
paradigm, making it possible to model more expressive constraints, e.g. co-NP
constraints. Section 2 offers some insight into the implementation by detailing the
most important part of the grounding transformation, while Section 3 provides
an example which shows how to use the resulting KR system.

2 Grounding Second-Order Logic

As second-order logic, with a descriptive complexity of PH [2], is a more expres-
sive language than first-order logic, we propose the more expressive Quantified
Boolean Formulas (QBF) as grounding target, rather than the less expressive
SAT or ground (disjunctive) ASP. Quantified Boolean Formulas are formulas of
the form

Q1x1 . . .Qnxn.φ

where Qn are quantifiers ∀ or ∃, xn are propositional variables and φ is a
quantifier-free, propositional formula.

The main idea of grounding second-order logic formulas over finite domains
to QBF is to replace all predicate atoms p(x) by propositions px and replace
all quantifications Qp by quantifications Qpx0

, . . . ,Qpxn
with xi in the domain

Dp of p. For example, ∀p : φ ∧ p(1) with domain Dp={1, 2} would become
∀p1 : ∀p2 : φ[p(1)/p1, p(2)/p2] ∧ p1 [1].
? Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

?? Matthias van der Hallen is supported by a Ph.D. fellowship from the Research Foun-
dation - Flanders (FWO - Vlaanderen).



2 M. van der Hallen, G. Janssens

Listing 1.1. SO model for Critical Friendship
1 type Person. % The Person type, corresponding to nodes
2 type Car. % The Car type, corresponding to colours
3 dislike :: (Person, Person). % A predicate encoding dislikes
4 c1 :: Person. % A person constant
5 c2 :: Person. % A second person constant
6 c1 6= c2.
7 ∃f ::(Person)→Car: ∀ a,b ::Person: dislike(a,b)⇒f(a)6=f(b).
8 ∀f ::(Person)→Car: (∀ a,b ::Person: dislike(a,b)⇒f(a)6=f(b)) ⇒ f(c1)=f(c2).

3 Modelling with Second-Order Logic
Consider the Critical Friendship problem: n persons want to travel to the same
location, and decide to carpool. Some of them, however, dislike each other and
do not want to be in the same car. By encoding these dislikes in a graph, we can
employ k-colouring, with k the number of cars, to show that a solution exists.
Additionally, we are interested in critical friendship pairs: Two distinct persons
for whom it holds that if they disliked each other, no k-colouring would exist.

Listing 1.1 provides a model for the Critical Friendship problem: Lines 1-5
specify the vocabulary, declaring two types (Persons and Cars), and three logic
symbols: The dislike relation and the two Persons c1, c2.

Lines 6-8 form the theory : second-order formulas, called sentences, with no
free variables except symbols declared in the vocabulary. Specifically, line 6 sim-
ply ensures that c1 and c2 are distinct Persons. The constraint of Line 7 ensures
that a function f representing a k-colouring exists. After rewording the critical
friendship constraint to “Any valid k-colouring maps c1 and c2 to the same car”,
it is clearly encoded by Line 8.
Note the high similarity between the NP constraint of k-colouring existence (Line
7) and the co-NP critical friendship constraint, which asserts something for all
k-colourings (Line 8). It is this co-NP property for which the Critical Friendship
problem requires second-order logic: first-order cannot ensure that a property
holds for all functions, it cannot express universal function quantification.

Having constructed a Knowledge Base (KB) by specifying a vocabulary and a
theory, we can provide instance-specific data and use inferences to solve queries;
e.g. after adding the following instance-specific data, we can use model expansion
to find that the friendship between Bob and Charles is critical:

Person = {Alice; Bob; Charles; David}.
Car = {Astra; Berlingo}.
dislike = {Alice, Bob; Bob, David; Charles, David}.

4 Results and Future Work
Our system is available online (http://dtai.cs.kuleuven.be/krr/SOGrounder/).
In previous work [1], this system was tested with different QBF solvers on the
strategic companies problem, a well-known problem in ASP and QBF communi-
ties. QBF solvers, combined with our grounder system performed competitively
with clasp, a well-known ASP solver. In current work, we are extending the sys-
tem with (1) new operators to accommodate counterfactual reasoning, and (2)
count and sum aggregates to allow for more numeric operations.

References

1. van der Hallen, M., Janssens, G.: Sogrounder: Modelling and solving second-order
logic. In: KR. pp. 72–77. AAAI Press (2018)

2. Immerman, N.: Descriptive complexity. Graduate texts in CS, Springer (1999)

http://dtai.cs.kuleuven.be/krr/SOGrounder/

	SOGrounder: Modelling and Solving Second-Order Logic (Extended Abstract)

