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Abstract. Assessing the performance of industrial assets usually re-
quires exploring and combining sensor data, event logs, asset charac-
teristics and domain expert knowledge. Therefore, this process is time
and resource consuming. Extrapolating the performances solely from the
event logs could lead to more optimal /pro-active planning of maintenance
activities. In [1], we have shown that event logs could be numerically en-
coded into event profiles accurately representing asset event behavior.
Therefore, it is possible to extract the event profile of a new operational
cycle and link it with the similar event profiles of past operational cycles
for which the performance is known. It offers a gain of time and resources
when exploring the performance of new operational cycles. We propose a
methodology to label asset performances solely based on the event logs,
using a standard (numerical) classifiers. The performance of a new as-
set operational cycle can then be assessed with negligible computational
time. The methodology is validated on real-life data from a photovoltaic
plant.

1 Introduction

Fast labelling of the performance of new industrial runs, i.e. operational cycles
is important for monitoring and maintenance purposes. If the performance of an
asset can be quickly assessed, maintenance activities can be planned responsively,
and the asset unavailability will be minimized. Moreover, if the performance
can be labelled with a profile indicating the root cause, then the maintenance
team will already have insights on the problem and its potential solution before
arriving on site. It would lead to more optimal planning of maintenance activities.

However, extracting performance profiles indicating root causes is a complex
and time-consuming task. For instance, we have shown in [1], that in the photo-
voltaic (PV) domain, it requires to combine irradiation data, yield sensor data,
event logs, plant characteristics and domain expert knowledge. Such process is
time and resource consuming and can not be done every night to assess the
performance of each of the thousands of plants in a portfolio.
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Therefore, methods that could quickly label asset performances would be
very valuable in industrial domains. One solution is to rely on the valuable in-
formation provided by the event logs. Meaningful event profiles can be extracted
from the event logs. For instance, one profile would be mainly characterized
by the occurrences of the event "over-temperature” while the other would be
characterized by the occurrences of the events "under-temperature” and “sen-
sor test”. These event profiles represent various internal behaviors. Then they
can be labelled using sensor data and domain knowledge. For instance the over-
temperature profile could be characterized as under-performing while the other
would be characterized as a regular behavior. Subsequently, they can be used to
characterize the performance of new operational cycles. A classifier can evaluate
if the event profile of a new operational cycle is similar to one of the past event
profiles for which the performance has already been evaluated. In this way, the
performance of the new operational cycle of an asset can simply be derived from
its event log through a standard classifier and without the need of inputs from
domain experts.

Such approach has been successfully explored by Fronza et al. [2] who have
generated numerical event profiles using random indexing (RI). They have trained
an SVM classifier to assess the performance of software runs as faulty or not,
solely based on their event logs. Unfortunately, the performance of their method
on our validation dataset has been disappointing since it relies on training the
models on software runs ending in failures (stops) which can be potentially pre-
dicted by the preceding contextual information. However, this is not always the
case in many industrial domains where assets produce a lot of warning and errors,
but failures occur very rarely. Therefore, we propose in this paper an alternative
approach more suitable in the given context.

The paper is organised as follows. First, the relevant literature about text
classification is explained in Sections 2. Then, in Section 3, we explain our
methodology for fast labelling of new operational cycles. In Section 4, we validate
our methodology in the PV domain by developing a case study on a real-world
dataset provided by our industrial partner. Finally, we conclude the paper with
a discussion and an outlook for further research in Section 5.

2 Literature Review

One of the challenges when applying classification to event logs is their textual
nature while most classifiers have been built to handle numerical values. The
typical approach in text classification is then to extract numerical features from
the text and apply the classification on these features. For instance, the features
could be the total number of words in the documents, the average length of the
words used in the documents or the total number of punctuation marks in the
documents. However, these methodologies can be complex to deploy. As stated
by Dalal et al. [3]|, they would require to be tailored to the event behavior,
e.g. "do all events have the same impact?”’ or "is the repetitions of the same
event relevant?”, and would likely have to include meta-data. Therefore, textual
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classifiers pose a challenge to develop an agnostic methodology. On the other
hand, numerical classification methodologies are well defined, more agnostic and
validated in various domains. These methods can be applied to various numerical
data, if the training dataset has been well constructed.

Therefore, another approach is to numerically encode the event logs. Fronza
et al. [2] have applied such method using RI to numerically encode the events
logs. RI is a data reduction method from the text mining field proposed by
Sahlgren in [6]. This method is used to store in a condensed way the “context” of
a word, i.e. the surrounding words. Fronza et al. have applied this methodology
on event logs generated by software by considering each event as a word and
each event log as a text. They were able to classify the software runs as faulty
or not faulty with a high accuracy.

3 Methodology

We have developed a methodology to label performance of asset operational
cycles based on their events logs. The steps of our methodology are the following:

1. Convert operational cycles to numerical standardized profiles, i.e. relevancy
score vectors

2. Annotate the relevancy score vectors with performance labels

Train a classifier to label relevancy score vectors

4. Extract relevancy score vectors of new operational cycles and label them on
the fly using the classifier

@

3.1 Relevance Score Extraction

The main challenge faced by our methodology is the textual nature of the event
logs which hinders their processing. Extracting typical event logs, i.e. event pro-
files, from textual event logs would require domain knowledge. However, we
intend to minimize the need of domain expert inputs as their time is valuable.
We solved this problem by numerically encoding the event logs as relevancy
score vectors. It allows to build agnostic clustering from the event logs. The rele-
vancy score methodology that we defined in [1] is applied on the event logs. Our
methodology follows 2 steps: 1) The event logs are segmented by operational
cycles; 2) The relevancy scores are computed based on the event frequency.

Defining atomic event logs The first step is to divide the event logs into
atomic pieces, i.e. into "traces or meaningful periods" of the asset, called atomic
event logs (AEL). For instance, in case of a car, the event logs could be divided
into operational cycles, from the start of the travel to its end. The definition of
these atomic event logs is therefore domain and goal oriented. The main interest
is to transform the continuous stream of events into a meaningful finite set of
event logs. These AELs will be easier to analyze and interpret. In addition, they
contain all the event correlations. For example, the interpretation of the event
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“temperature error” is modified in case it is preceded by the event "temperature
sensor broken”. The goal of the segmentation into AELs is to have the events
that could interact all stored together in one file.

Computing relevancy score We have used a method inspired by the widely
used in text mining TF-IDF score, where for each event type of each AEL,
its relevancy score is computed. The goal is to attribute a score reflecting the
"abnormality" of the event, i.e. determine degree to which the event deviates
from the regular asset behavior. For example, the critical event "temperature
error" that occurred 2 times in the atomic logs should have a high relevancy
score as it indicates a failure, while the event "start" (representing the usual
behavior of the device) that occurred 17 times should have a relevancy score of
0. Therefore, the events’ frequencies need to be carefully exploited.

By considering the AELs as a text, text mining methods such as TF-IDF can
be adapted for this purpose. Therefore, our methodology relies on the computa-
tion of two frequencies: 1) The frequency of the event (type) in the AEL, and 2)
the frequency of the event (type) in well selected corpus of AELs aligned with
the analysis goal in mind.

First, the term frequency (TF) is computed, i.e. for each event type that can
be reported by the asset, its frequency in the AEL is computed. The formula
below is used.

# occ. of events e; in logs of asset a; for AEL [;
# of event in AEL [; for asset a;

TFei,,ai,,l,- =

The inverse document frequency (IDF) need to be adapted to the industrial
event logs context as the text corpus on which it relies does not apply here.
Therefore, the corpus definition needs to be adapted. Three approaches are pos-
sible and need to be carefully selected:

— The corpus consists of all available AELs. It allows to compare asset behavior
over time and across assets.

# of AEL in all assets and all days
& # of AEL where event e; occured

— The corpus consists of all the AELs of one asset. It allows to focus on one
asset behavior and monitor the evolution of performance over time.

IDF,, =1lo

# of AEL for asset a;
# of AEL for asset a; with event e;

— The corpus is composed of AELs of all assets for the same trace (e.g. the same
day). It allows objective comparison of performance across assets. However,
as events occurring in all AELs of the corpus are considered less relevant, a
failure occurring in all assets would be masked by this case.

IDF,, o, =log

# of AEL occuring at the period p;
IDF,, ,, =log - -
v # of AEL for period p; with event e;
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Subsequently, the relevancy score is computed by multiplying TF and IDF:
Relevancy score = TFg, 4,1, * IDF

In this way, the relevancy score uses the frequency of the event (more frequent
events have higher scores) corrected by the IDF that will decrease the score of
events frequent in the corpus (if an even occurs in all AELs of the corpus, its
IDF is log(1) = 0, which leads to a relevancy score of zero).

By computing the relevancy scores over all events for each operational cycle,
a numerical vector representing the asset events relevancy, i.e. event profile, for
the operational cycle is obtained. The textual representation of the events has
been transformed into a numerical feature vector and the event logs have been
preprocessed by assigning null (or low) scores to the less relevant events.

The advantage is twofold: 1) the numerically encoded event logs can easily be
clustered using traditional clustering methods. 2) event logs of various sizes are
converted into numerical vectors of fixed size, which facilitates their comparisons.

3.2 Performance Annotation

One of the main challenges in industrial setting is the lack of labelled data.
Therefore labelling strategies needs to be applied e.g. a rather straightforward
approach is to label the past AELs as faulty, i.e. if an outage occurred, or healthy,
i.e. if no outage occurred, based on domain experts inputs. More advanced la-
belling can also be performed, combining multiple data sources. In [1], we la-
belled PV data by combining sensor data, event logs, plant characteristics and
domain expert knowledge. This time and resource consuming methodology al-
lowed to label historical data with complete and precise performance profiles
such as “Inverter-days with high outages due to Riso Low, mainly occurring in
the end of the summer”. Time consuming methods providing detailed labels can
be afforded in this step as the labelling only need to be performed once on the
historical data.

3.3 Classifier Training

The goal is to build a model classifying the relevancy score vectors into their per-
formance profile, e.g. classify the vector, i.e. AEL, as healthy or faulty. Relevancy
score vectors being numeric, they can easily be classified by a numerical classi-
fier. Moreover, the relevancy score methodology not only converts the event logs
as numerical inputs, but also pre-processes the event logs. It hides the irrelevant
events and pinpoints the most important ones. Therefore, the combination of
classification methodologies and relevancy score allows an easy classification of
textual event logs. Numerical, widespread and agnostic classifiers can be applied
to the event logs to build classification models.

3.4 Labelling new operational cycles

The model can then classify a new AEL performance, solely based on the event
logs. The relevancy score vector of a new AEL can be extracted from its event
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log. The classifier can then detect to which performance label it belongs and
hence what is the performance of the new AEL.

4 Evaluation and Discussion

The critical performance aspect of our methodology is the ability of the classifi-
cation algorithm to correctly label the new incoming operational cycles. We have
experimented with several different widely used classifiers and compared their
accuracy. Another factor impacting the overall performance of our methodology
is the encoding of the textual event logs into numeric relevance vectors based
on TF-IDF scoring. We consider important to benchmark our methodology with
the one developed by Fronza et al. [2] using an alternative encoding approach
based on RI.

4.1 Data understanding

We have used one year of event logs from one - often faulty - PV plant. The
data has been provided by our industrial partner 3E, which is active, through its
Software-as-a-Service SynaptiQ, in the PV plant monitoring domain. PV plants
are composed of several PV modules (that convert the irradiation into direct
current) connected to one or several inverter(s) (that convert the direct current
to alternative current) which send the current to the grid. These systems are
now continuously monitored. In addition, various sensors (measuring the irra-
diation, electricity production, ...) are present in the plant. An inverter reports
status, i.e. its current state like start, stop or running, but also other events that
can represent e.g. an outage (such as grid fail or string disconnected) or other
phenomena (such as over-temperature or DC current under threshold).

In the PV case, an AEL corresponds to the event logs of one inverter for one
day. As the plant is only active during the day, it can be considered that it "re-
boots” at night (often, small problems disappear the next morning).Therefore,
each day corresponds to a operational cycle. In addition, as the events are mon-
itored and reported at the inverter level, AELs are at the inverter level. Hence,
for our plant with 26 inverters, 9490 AELs have been obtained (26 inverters-logs
times 365 days). An AEL typically contains around 5 distinct event types. Over
our one year dataset, 54 distinct event types have been reported. Therefore, our
relevancy score vectors have a length of 54 but only around 5 non null values.

Each AEL has been labelled as healthy or faulty using additional datasets. An
AEL is labelled as faulty if an outage is detected during that operational cycle,
i.e. if there was enough irradiation to have electricity production but there was
no yield (for at least 30 minutes). There are 3237 healthy AELs and 539 faulty
AELs. Note that it creates an unbalanced dataset with 85% of healthy AELs.
Therefore, a classifier labelling all AELs as healthy would be correct 85% of the
time. Note that events related to a failure only occurred in the AEL where the
failure occurred, allowing to randomly split our dataset into training and testing
datasets and apply 10-fold validation.
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4.2 Classifier Performance Benchmarking

We have benchmarked 7 classifiers namely: 1) Logistic regression, 2) Linear dis-
criminant analysis, 3) K Nearest Neighbor (kNN), 4) Decision Tree (DT), 5)
Random Forest (RF), 6) Gaussian Naive Bayes and 7) Support Vector Machine
(SVM). These methods have been selected as they are widespread and have been
validated in various domains |7, 8]

Figure 1 shows the mean accuracy (in abscissa) for each classifier (in ordi-
nate). The accuracy is computed using a 10-fold validation methodology, i.e. the
dataset is randomly divided in two datasets, 90% used as training and 10% used
as testing and the accuracy of each classifier is assessed on this dataset. Then
the process is repeated ten times to ensure statistical significance of the accu-
racy. The accuracy is computed using the Jaccard similarity score traditionally
used for binary classifier. The score computes the overlap between the prediction
of the classifier and the reality. A score of 1 represents a perfect classification,
i.e. a 100% overlap between prediction and reality. The computation time of the
methods is not considered in this evaluation as it was negligible on our dataset.
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Average accuracy
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Log. Lin. Disc. KNN Decis. Rand. Gaussian SVM
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Fig. 1. Accuracy of the 7 classifiers applied on the event logs pre-processed through
the relevancy score methodology

Figure 1 indicates that the classifiers kNN, DT and RF are the most accurate,
with an almost perfect accuracy of around 0.98. Gaussian NB has the lowest
accuracy with a mean accuracy of 0.75. SVM, Linear discriminant analysis and
Logistic regression have similar accuracies, with a mean accuracy of around 0.94.
From this figure, it appears that DT, RF and kNN are probably the best methods
to consider for our workflow.
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Table 1 contains the precision (the ability of the classifier not to label as
positive a sample that is negative), recall (the ability of the classifier to find
all the positive samples) and F1 score (the combination of precision and recall)
for the three pre-selected methods. It appears that kNN and DT are slightly
superior to RF in terms of recall for the faulty AELs. RF only retrieves 0.72% of
the faulty AELs while kNN retrieves 0.96% of them and DT 95%. kNN and DT
have otherwise similar accuracy with kNN slightly more accurate. The remaining
metrics are similar. However, as it is important to not miss any faulty AEL, the
recall score for the faulty class is the most important metric. Therefore, KNN
(using 3 neighbors) is the most suited classifier.

This validation showcases the accuracy of our methodology to recognize
faulty or healthy event logs. It indicates that our relevancy score vectors are
able to hide the irrelevant events and pinpoint the relevant ones, i.e. the ones
related to healthy or faulty behaviors. The classifier can then easily label new
asset AELs based on these few relevant events.

Table 1. Comparison of the accuracies for Random Forest, Decision Tree and K Nearest
Neighbor

Classifier Faulty class Healthy class
Prec. Recall F1 score|Prec. Recall F1 score
Random Forest 1.00 0.72 0.84 [0.96 1.00 0.98
Decision Tree 0.96 0.95 0.95 [0.99 0.99 0.99
K Nearest Neighbor 0.98 0.96 0.97 |0.99 1.00 0.99

4.3 Relevancy Score vs. Random Indexing Encoding

A similar methodology has been successfully applied by Fronza et al. [2] on soft-
ware event logs using RI. Benchmarking our methodology against the methodol-
ogy of Fronza et al. would allow to compare the accuracy of the relevancy score
methods against RI. Subsequently, any difference is supposed to come from the
numerical encoding method or the type of data (software vs. industrial (PV)
asset), as the methodologies are otherwise similar.

We have computed the mean accuracy of the methodology of Fronza et al. for
the 7 classifiers experimented previously. They have been applied on the same
dataset with the same 10-fold validation methodology.

Figure 2 shows the results for the 7 classifiers. It shows the mean accuracy
(in abscissa) for each classifier (in ordinate). Except for Gaussian NB with a
mean around 0.1, the other methods have a similar accuracy of around 0.50 -
0.60. The RI approach seems therefore less accurate than the relevancy score
one, for each classifier. In their study, Fronza et al. obtained a mean accuracy of
0.80-0.90, so a better accuracy than in our dataset. It indicates that we have a
different event behavior in the PV domain which disadvantages RI.
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Fig. 2. Accuracy of the 7 classifiers applied on the event logs pre-processed through
the RI methodology

The cause of the low accuracy of RI is twofold. First, RI is less adapted to
event behaviour. Software are procedural, i.e. events typically follow the same
sequence when an action occurs. On the other hand, inverters (and many other
industrial assets) may report events in various order for the same action. In addi-
tion, software events have strong connections with the previous events reported,
sometimes with events reported long time ago. PV events usually only interact
with a few events in their immediate neighbourhood. Our methodology does not
focus on event correlation but on pinpointing the relevant events and is therefore
not impacted by the variation in the event order.

Second, Fronza et al. defined an operational cycle/AEL as the set of events
generated by the software from its start until its end (labelled as healthy) or
until a failure (labelled as faulty). Therefore, faulty software AELs always end
with a failure. However, the labelling of industrial asset performance is less strict
or precise. In our dataset, healthy and faulty periods can co-occur in a faulty
AEL. RI seems therefore less resilient to less precise labelling of the data as it
considers all the events.

Therefore, RI is more suited for procedural data with strong context-awareness
while the relevancy score methodology is more adapted for variable noisy data,
i.e. data with many irrelevant events.

5 Conclusion

Our methodology allows rapid annotation of new asset operational cycles with
a known performance label or profile, only based on event logs. Assessing the
performance of an asset is time and resource consuming as it implies analyzing
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the event logs, the various sensor data, the asset characteristics and requires
domain experts’ knowledge. We have shown that our methodology was able to
label performance of new operational cycles with a mean accuracy of 98% using
a kNN classifier, solely based on the event logs and with negligible computa-
tion time. Moreover, our methodology has been shown as more effective than
the Fronza methodology, relying on RI, for our validation domain. It ensures a
fast and scalable labelling of the asset performance that could be deployed in
industry.

In terms of further research possibilities, our methodology should be validated
on other datasets to benchmark RI and relevancy score methodologies. Both
methodologies seem to have different accuracies based on the application domain.
We suspect that RI is more suited for procedural data with strong context-
awareness while the relevancy score methodology is more adapted for variable
noisy data, i.e. data with many irrelevant events. A more thorough comparison
of the two approaches on event logs generated by various asset types e.g. cars,
software, medical records, ... could allow to assess this assumption and better
estimate the event characteristics that impact the accuracy of both encoding
approaches. Moreover, it could allow to further refine the classifiers accuracies
and better understand them.
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