CEUR-WS.org/Vol-2491/paper65.pdf

Modelling Mutually Interactive Fictional
Character Conversational Agents

Thomas Winters[()()OO—OOOl —7494—2453]

KU Leuven, Leuven, Belgium,
thomas.winters@cs.kuleuven.be

Abstract. Conversational agents, such as chatbots and virtual assis-
tants, are typically modelled to have a broad, generic personality, which
they employ in their communication with single human beings. How-
ever, by framing a conversational agent as existing fictional characters,
humans can imagine a shallow agent to have a larger personality than
without this framing. Using multiple such agents allows for conversa-
tional interactions that help construct stories with or without human
intervention, leading to multi-agent human-computer interactive story
telling. In this paper, we model six semi-independent Twitterbots based
on fictional characters based on the Belgian children’s TV show Samson
& Gert, which are mutually interactive with each other as well as with
other Twitter users. To achieve this, we first introduce a new language for
modelling generative weighted context-free grammars called Babbly and
a new framework for easily specifying complex Twitterbot behaviour. We
found that these bots were not only well received by users, but also cre-
ated lots of interesting, unexpected positive interactions. Using fictional
characters as framing for conversational agents can thus help achieving
interesting personalities and shows potential in interactive computational
story telling.

Keywords: Chatbot - Twitterbot - Generative Models - Computational
creativity - Computational humor

1 Introduction

Conversational agents have seen a large increase in commercial success, with
most big tech companies developing their own virtual assistant, such as Alexa,
Google Assistant, Siri and Cortona. [All these assistants have chosen to model
generic personalities, due to having to fulfill a wide variety of tasks. This large
variety of tasks implies that these agents are usually used as a tool, and by
extend only in conversations between two entities, namely the conversational
agent and a human [2].

In this paper, we propose one way of adding more personality by adding

personality traits of fictional characters, and making them interact with other

Copyright (© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 T. Winters

bots based on fictional characters from the same world. This framing can help
humans to induce more characteristics of the agent they are talking to, thanks
to knowing their background. This might help creating the feeling of a group of
friends, which might contribute to perceiving the conversational agent(s) as more
human. We use the Belgian children’s TV show Samson & Gert as a source of
fictional characters, as they have a wide range of figures with varying signature
lines.

2 Background

2.1 Conversational Agents

Conversational agents have been researched for several decades, with many
frameworks offering different approaches for having conversations. The Turing
test [13] was proposed in 1950 as a way of testing the thinking capabilities of
machines by making humans judge if they were conversing with another hu-
man or with a machine. This influential (but also controversial) test was later
implemented in the yearly Loebner prize competition, which is won by the con-
versational agent that fools the judges the most. One of the most frequent and
famous early winners in the Loebner prize is ALICE, and more recently Mitsuku,
which is in a way an extension of ALICE [II15]. Both chatbots aim to achieve
realistic dialogue using mark-up language AIML (Artificial Mark-up language),
a derivative of XML. This open-source language allows botmakers to create dia-
logue patterns with wildcards, which match input to output dialogue by finding
the best fitting input pattern [12]. Although this is a very time consuming task to
model, developers can thus use AIML to produce a chatbot that responds with
sensible answers using correct grammar. The quality of this type of chatbot
typically improves by limiting the domain, e.g. on a frequently asked questions
(FAQ) catalogue, to train the bot [12].

Twitter is relatively new medium for chatbots to flourish, although these bots
are usually called “Twitterbots” on this platform [14]. One of the most popular
frameworks for designing Twitterbots is Tracery, a language for specifying gen-
erative context-free grammars [4], using CBDCE Although many thousands of
Twitterbots have been created using this framework, they are usually unable to
adapt to user replies, and just tweet like they usually would in response to user
input.

2.2 Framing in Computational Creativity

Framing is one of the four aspects (along with Aesthetics, Concept and Expres-
sion) of the influential computational creativity framework for categorising and
evaluating creativity in machines, called FACE [3]. It denotes artefacts that help
understand generated artefacts by a system, or as it has been recently redefined:
“Framing refers to anything (co-)created by software with the purpose of altering

! https://cheapbotsdonequick.com/

https://cheapbotsdonequick.com/

Modelling Mutually Interactive Fictional Character Conversational Agents 3

an audience’s perception of a creative work, or its creator.” [6]. It is an under-
used aspect in generative systems, but has been shown to enhance the perceived
creativity in systems [6]. We believe that by framing our conversational bots
as fictional characters, and making them interact with each other as generated
framing, improve their perceived capabilities.

3 Framework Implementation

3.1 Babbly: Language for Modelling Generative WCFGs

Babblyﬂ is a new language we introduce for easily modelling generative weighted
context-free grammars. The syntax is similar to what one would expect from a
language for modelling generative context-free grammars, but with the addition
of allowing clauses to be weighted, and allowing several regular expression-like
constructs and records. For example, in Figure [T we can see several of these
allowed language constructs.

person = {
4: Gertje,
1: Bobientje
}
ao = (alo)
mwahzeg = Mw<ao:>{1,3}h (zeg hé(, <person>){.6}|<person>)

Fig. 1. Basic Babbly program for generating Samson’s catchphrase

The Babbly code in Figure[I] declares that the named generator person has a
probability of 80% of generating “Gertje” and otherwise “Bobientje”. The named
generatorEI ao will uniformly pick “a” or “0” when used. These named generators
are referenced using triangular brackets, and can be locked to always return the
same value using a record. A record is denoted by using a colon after the name
of the declaration, followed by a record name of arbitrary length (even zero, as
used in <ao:>). Curly brackets are used to denote the repetition of a part, similar
to their use in regular expressions syntax. As such, <ao:>{1,3} is equivalent to
<ao:>|<ao:><ao:>|<ao:><ao:><ao:>, and will thus generate “a”, “aa”, “aaa”,
“0”, “00”, “oo0”. Note that without the colon, which binds the construct to a
record, “aoa” would also have been a possible generation. When only a single
fraction between 0 and 1 is used between curly brackets, this will return the

part between brackets with this probability, and the empty string otherwise. As

2 lhttps://github.com /twinters/babbly
3 We prefer to use the term “named generator” over “variable” since the assigned value
does not change over time.

https://github.com/twinters/babbly

4 T. Winters

such, the total probability the code in Figure [1| generating for example “Mwaah
zeg hé, Gertje” is % . % . 1% . % = %, and the probability of “Mwoh Bobientje” is
535 = wo

More advanced constructs that the language offers is the support of externally
defined named generators, generator cascades and (possibly user-defined) func-
tions, as can be seen in Figure[2] In this figure, both lastname and firstname
are external named generators given to Babbly upon running the generator.
These are transformed by the externally defined function mispronounce, and
then capitalised by the Babbly functions capitaliseAll. The slash in between
denotes that the text generator will first check if a last name is given, and if not,

just use the <firstname.mispronounce> to generate person.

person = Meneer <lastname.mispronounce.capitaliseAll>/<firstname.mispronounce>

Fig. 2. Example of some advanced Babbly features, which redefines the person decla-
ration of Figure

Comparison with Tracery Although Tracery is an efficient and intuitive
framework that makes building text generators more accessible to a wide audi-
ence irregardless of their background in computer science, our novel text genera-
tion language Babbly provides several significant advantages over other popular
text generation frameworks like this. First, since it allows for adding weights
to clauses, it is much easier to model low probability possible generations, as
Tracery users usually have to duplicate clauses multiple times to increase the
weight, leading to more overhead when changing these clauses later. Secondly,
Babbly offers records for locking certain instances of a named generator, such
that a generation can more easily be consistent with its references without the
need of declaring functions. Thirdly, Babbly offers support for importing other
Babbly files as well as newline separated word lists as variables, meaning that
named generators and word lists can easily be shared between different text
generators. Fourthly, it offers shorthands inspired by regular expressions, e.g.
disjunction, repeats and probability of occurring, to remove the need of intro-
ducing unnecessary variables. Fiftly, it supports loading in externally specified
texts as named generators, and treating it as any other Babbly-defined text
generator. This way, our system allows to insert words that are relevant in the
conversation a bot might be having with a user. Sixtly, the syntax of the lan-
guage is designed to be expressive enough to quickly model many types of text
generators, instead of using JSON syntax like Tracery does. One downside of this
is that JSON-based text generators are usually easier to port to other platforms
and have good support in many editors due to their limited syntax rules. We
implemented a syntax highlighter in Sublime Text to decrease the possibilities
of mistakes when modelling text generators in Babbly.

Modelling Mutually Interactive Fictional Character Conversational Agents 5

Comparison with AIML Compared to chatbot frameworks like AIML, Bab-
bly is more focused on generating a diverse set of versions of a particular answer,
while AIML has the functionality to know which replies work for what kind of
response. This is due to Babbly missing structures like AIML’s patterns to match
input. There is also no parsing of the input and remembering topics mentioned
in the conversation. This means that these tasks have to be done by external
systems refering to the appropriate reply templates, e.g. the behaviour objects
explained in section [3.2] However, AIML only offers a uniform random selection
of possible answers to a prompt, whereas Babbly offers more flexible templates
encoding many possible answers, with tighter control over the probability of
every possible answer. Babbly also offers external functions to help determine
certain aspects of the generated texts. It is thus more focused on the generative
side than the reply side, and could thus be used in a more pattern-based reply
system to determine the appropriate template to respond.

3.2 Twitter Agent Behaviour Modelling Framework

We introduce a new frameworkﬁ that serves as a layer on top of the popular Twit-
ter4JE| library by creating abstractions for simplifying the modelling of complex
Twitterbot behaviours.

TweetFetchers We introduce an interface called TweetsFetcher that generates
streams of tweets upon calling with an optional parameter of tweets being more
recent than a particular tweet identifier. An instance of a TweetsFetcher has
already encoded the necessary variables to know what types of tweets should be
fetched from Twitter (e.g. a search query). There are many types of TweetsFetchers
available that are built on Twitter4J’s functionalities, such as fetching mentions,
timeline, tweets corresponding to a search, hashtag, user or of a particular twit-
ter list. There are also fetchers that use other TweetsFetchers, e.g. by caching
them, fetching the tweets of which tweets from another stream reply to, com-
bining streams together and for cascading fetchers (meaning that the second
TweetsFetcher is only called if the first one returns an empty stream of tweets).
The last category of TweetsFetchers is for the fetcher filters, which filter out
particular tweets from a stream, e.g. filter out particular tweets based on a given
condition, at random, already replied tweets or tweets from users that are not
following the bot. This is thus a powerful abstraction to model the constraints
on the streams of tweets a particular Twitterbot behaviour can reply to.

TwitterBehaviours Our framework introduces the notion of PostBehaviour,
ReplyBehaviour to model behaviours and compose composite Twitterbot be-
haviours. Upon execution of a Twitterbot in this framework, the executor calls
the PostBehaviour a given number of times during a given timerange at random

4 https: //github.com /twinters /twitter-util
% http://twitterdj.org

https://github.com/twinters/twitter-util
http://twitter4j.org

6 T. Winters

<<Interface>>
ITweetsFetcher

Long)
+retrieve(sinceld : long) : Stream<Status>
+retrieve() : Stream<Status>

: . Long>) : I
+filter(fiter : Predicate<Status>) : [TweetsFetcher
+ilterd ong, Status>) :
+filterOutO Twitter) : 1
+filterO

+filterOutRetweets() : ITweetsFetcher
+filterOutReplies() : ITweetsFetcher
+filterRandomlylf(twitter : Twitter, shouldFilter : Predicate<Status>, chances : int, outOf : int) : ITweetsFetcher
+filterRandomly(twitter : Twitter, chances : int, outOf : int) : ITweetsFetcher
(1 ache : he

C
+distinct() : ITweetsFetcher
r)

AN Y >AL .
1

et TweetsFromPage(page : Pa..||-words : ImmutableList<String> ||-user : String -cacheTime : Tempy -predicate i ‘ ‘ ‘

language : Op! boolean ||-cache : List<Status> isAllowed(status - Sttus) : bool

-queryType : ResultType -allowReplies : boolean astCached : LocalDateTime

allowlIRLs - hoolean ! 1d - long [— 1
ListTweetsFetcher | [TimelineTweets ‘ ‘ ame : i
st long Fetcher -chances : int boolean String

-outOf : int |-maxNumberLookback : int

Fig. 3. Schematic overview of the main TweetFetchers

intervals. This PostBehaviour can be constructed using a text generator mod-
elled using Babbly, a quote retweeter listening to a TweetsFetcher, a cascade
or combination of other PostBehaviours or any other zero-argument function
returning an optional string The ReplyBehaviour of the Twitterbot is called
when finding a new unhandled tweet from the given TweetsFetcher that it lis-
tens to. This behaviour could also be a Babbly generator, an automatic follower,
automatic liker, a combination or cascade of multiple ReplyBehaviours or any
other any function mapping a tweet to an optional string.

<cinerface> <cinerface>
IPostBehaviour IReplyBehaviour
+post(weeter Tweeter) : boolean|

Twester, teetToRes

N o i ply
behaviours |+orEise(replyBehaviour : IReplyBehaviour) : IReplyBehaviour

orse(postBenaviour IPosBe.. | _penaviurs -vehavoun
and(eptyBenavour IRepyanaviour): IRephyBanaviour
rory(amountOfTimes -) Po. ‘raty(amountOfTmes n) ReplyBohaviour
weghiweightdoubi): Weigt o Weighied<?
A GnmerPostBehaviour Z5 [y Roenaviows
I T T G I T] Tk

|behaviours : 1PostBenaviour || | [-oshaviours : IReplyBe...|extGenerator - IReactingGene.

mapper : BFunction<Status, T.

|behaviours : 1PostBe.. | |-benaviours : List<Weighteds.. | reacter: IReactingGenerator.. | | maxRetres - int
mapper - BiFunction<Status, .| | innerPostBehaviour - 1P

-statusGenerator : IGenerator.

| behaviours : IReplyBehaviour | [maxRetries - nt

|innerRoptyBehaviour : IR

textGenerator: IGeneralo. | | ollowersFetcher

Fig. 4. Schematic overview of the PostBehaviours and ReplyBehaviours

4 Modelling Fictional Character Agents

Using our novel Babbly and Twitterbot framework, we implemented six different
Twitterbot{’] each one based on a different character from the Belgian children
TV show Samson & Gert show. Every Twitterbot is running seperately on a dif-
ferent server, with no shared real-time information, other than the Twitterfeeds

5 List of the bots: https://twitter.com/thomas wint /lists/samson-bots

https://twitter.com/thomas_wint/lists/samson-bots

Modelling Mutually Interactive Fictional Character Conversational Agents 7

they independently follow. The only exception to this is that the Twitterbots
based on Samson and on Gert are running on the same server, as the GertBot
needs to know the original word that SamsonBot mispronounced. All of these
bots are interacting with each other, as well as with other Twitter users that
interact with them.

4.1 SamsonBot

In the Samson & Gert TV show, Samson is a talking dog that is the main
character of the show. His most prominent personality trait is that he does not
know what most difficult words mean, and asks Gert what a word means while
mispronouncing the word by saying similar sounding words. For example, if
someone were to mention a “Twitterbot”, he might ask Gert what a “Glitter pot”
is. Similarly, he mispronounces the names of almost all of the other characters
in an analogous fashion.

Mispronunciation Function We achieved this mispronunciation behaviour
in SamsonBotﬂ by modelling a mispronunciation function and adding it as a
custom function to the Babbly generator modelling Samson’s speech patterns.
This mispronunciation functionality minimises a weighted Levenshtein distance
[89] of the original word to concatenations of at most two random words that do
not form exactly the same word. The costs of the Levenshtein distance function
are modelled to be higher for replacing or removing vowels than consonants, as
the former contribute more to the general sound of the word and resemble the
way Samson usually mispronounces words in the show. Additionally, it makes
sure that the last letter of the word is the same, and if not, tries to fix this with
as little change as possible.

Bot Behaviour The TwitterBehaviours of Samson is for both posting and
replying the same, with the only difference being that the PostBehaviour quote-
retweets instead of replying. They are both cascades of behaviours, checking for
questions, lyric similarity and a default mispronunciation case. The bot first
checks if profanities are used in the tweet, and if so, ignores the tweet and ends
the interaction. The bot will then check if the tweet is a yes/no question by
checking if the tweet ends with a question mark and does not contain a question
word. If so, it reacts in Samson’s stereotypical way of talking with a vague, 8-ball
inspired answer, e.g. “Mwaah zeg he, ik denk zo stil in mijn hoofd van wel zo ja.”
(meaning “But hey, I'm thinking quietly in my head of yes.”) It then checks if the
tweet contains significant overlap with lyrics of one of the Samson & Gert songs
by using n-grams, and if so, replies with a tweet containing part of the chorus,
but with one of the last words of a line replaced by a rhyme, using a Dutch
rhyming dictionary. The chorus is detected by looking for “chorus” markers in
the lyrics, and otherwise taking a paragraph encompassing the most frequent

7 lhttps:/ /twitter.com /SamsonRobotl Code: https://github.com /twinters /samson-bot

https://twitter.com/SamsonRobot
https://github.com/twinters/samson-bot

8 T. Winters

lines of the song. If the tweet does not either contain a question nor a lyric, it
will mispronounce the longest word of the tweet, and ask what it means. It will
also mispronounce the name of the Twitter user, and thanks to the deterministic
mispronunciation search functionality, always use the same mispronunciation for
the same user just like the real Samson does, which is usually appreciated by
users of the botf]

4.2 GertBot

Gert is the other protagonist of Samson & Gert, and is the owner of Samson. In
the show, he always corrects Samson when he asks what a certain word means,
by repeating the word and then defining it.

Bot Behaviour We implemented GertBotEI by looking up the word on Wik-
tionary{ﬂ searching for the root word by recursively following the definition
and shortening the final definition as much as possible. The bot also corrects
the words that were incorrect whenever SamsonBot mispronounces lyrics. The
ReplyBehaviour here is thus just listening to whenever SamsonBot tweets, and
reacting on it immediately.

4.3 BurgemeesterBot

The Burgemeester is the mayor of the town of Samson & Gert and is known in the
show for giving generic, inclusive speeches, e.g. “Ahem, ahem, ahem. To everyone
who came: congratulations. To everyone who didn’t come, also congratulations”.
In order to implement this in BurgemeesterBot, we first needed a source of
actions humans would do. The system also needs a method for negating actions
to create the second part of the speech. These are then inserted into slots of the
Babbly template, in which we were able to model several low probability hidden
jokes into the speeches, to keep the bot more interesting.

Action Discovery The system uses titles of random WikiHow pages as a source
of textual descriptions of possible actions, as this has been shown to be a good
source of actions humans would generally do [I8]. It also scrapes news headlines
from a Belgian news site and with a lower probability uses actions retrieved
from these headlines, as previous research showed how this makes Twitterbots
feel more tied to current events [I6JI7]. It discovers possible actions in headlines
by using a combination of the detailed POS-tags LanguageTools provides, and
finds the most likely ones by using the probabilistic POS-tagger from OpenNLP.
This way, it finds the most likely verb, and discovers words that are likely to be
subjects, adverbs and other words establishing the action.

8 As can be seen in this conversation: https://twitter.com/SamsonRobot /status/
1001833743768793090

Tlhttps: //twitter.com/Gert bot. Code: https://github.com/twinters/gert-bot

10 https: / /www.wiktionary.org/

https://twitter.com/SamsonRobot/status/1001833743768793090
https://twitter.com/SamsonRobot/status/1001833743768793090
https://twitter.com/Gert_bot
https://github.com/twinters/gert-bot
https://www.wiktionary.org/

Modelling Mutually Interactive Fictional Character Conversational Agents 9

Action Negation After the bot finds an appropriate action to speech about
(either from WikiHow or from the news), it negates them for the second part
of the speech. It does this by looking up antonyms for every word in the action
on Wiktionary, and replacing one of the words with its found antonym. If no
antonyms are found, it uses several hard-coded replacements, such a changing
“with” to “without” and “a” to “no”

Bot Behaviour For the posting behaviour, BurgemeesterBoE selects a ran-
dom Wikihow page{ﬂ that does not contain a named entity, or scrapes an action
from the news. When replying to a tweet, it uses the WikiHow search functional-
ity on the tweet text, and keeps removing the shortest word from the tweet text
until the search results in a page, in order to find a related human action. It uses
this action along with the action negation system to fill in the slots in the Babbly
template. This then might lead to the following tweeﬂ “Ahevum. Aheuwuuum.
Aheum. Aan allen die luiheid overwinnen: proficiat. Aan allen die werklust over-
winnen: ook proficiat.” (= “Ahem. Ahem. Ahem. To all who overcome laziness:
congratulations. To all who overcome work desire: also congratulations.”).

4.4 AlbertoBot

Albert Vermeersch is the food-obsessed hairdresser of the town of Samson &
Gert. He is known for eating all of the food in the house of Samson and Gert,
and constantly asking for more candy, cookies and other snacks. He is also known
for correcting anyone calling him by his real name (Albert) to “Alberto”.

Bot Behaviour The first behaviour the AlbertoBoﬂE does is automatically
following back anyone following him, and unfollowing them if they unfollow. This
way, users (or other bots, for that matter) can indicate that they like the bot
to occasionally interact with them. The first, small reply behaviour the bot has,
is that it will correct anyone calling him “Albert” with his catchprase “First of
all, it’s AL-BER-TOOO, second of all...”, followed by some arbitrary statement.
The main reply behaviour of this bot is that for every tweet on its timeline, it
looks up which words can be food by searching them on Smulweﬂ a Dutch
cooking website. If it finds enough evidence for a part of the tweet text to refer
to food, he uses one of the many Babbly templates to show his enthusiasm for
this food.

1 https: / /twitter.com /BurgemeesterBot. Code: https://github.com/twinters/
burgemeester-bot

12 Using WikiHow’s random page functionality https://nl.wikihow.com/Speciaal:
Randomizer

% https:/ /twitter.com/BurgemeesterBot /status/1006129059636621312

1 https: / /twitter.com/AlbertBot, Code: https://github.com /twinters/alberto-bot

15 https://www.smulweb.nl

https://twitter.com/BurgemeesterBot
https://github.com/twinters/burgemeester-bot
https://github.com/twinters/burgemeester-bot
https://nl.wikihow.com/Speciaal:Randomizer
https://nl.wikihow.com/Speciaal:Randomizer
https://twitter.com/BurgemeesterBot/status/1006129059636621312
https://twitter.com/AlbertBot
https://github.com/twinters/alberto-bot
https://www.smulweb.nl

10 T. Winters

4.5 OctaafBot

Octaaf De Bolle is the local shopkeeper of the show and is known for bragging
about being a specialist in most actions that any other character mentions.
For example, if someone were to mention creating Twitterbots, he might reply
with “Ah, creating Twitterbots! Now that happens to be one of my many talents.
My daughter can confirm that, as she usually says: “Dad, the way you create
Twitterbots...”, well, that’s how I create Twitterbots!”. This is thus a simple
template, which we can fill with any action found in a tweet using the same
system BurgemeesterBot uses to scrape actions from the news, but instead from
the tweets from the streams the bot listens to.

Bot Behaviour OctaafBodE has a reply behaviour as well as an identical
post behaviour, which just quote retweets instead of replying. He listens to his
mentions, his timeline and people mentioning his full character name on Twitter.
Every so often, he selects a tweet that contains an action, and replies to it by
bragging about his skills in this action. He also has a reply behaviour designed
for tweets of his Twitterbot mom (JeannineBot), which makes him reply with
“Yes, mom, Yes” whenever she gives advice, in which she usually undermines his
statements.

4.6 JeannineBot

Jeannine De Bolle is Octaaf’s mother in the TV show. She is usually very proud
of being a handy person as the president of a local hobby club, and gives advice
to all other characters. To generate appropriate advice for any tweet, we turn
again to the WikiHow article search functionality and use the tips section at
the bottom of related WikiHow articles, as they tend to include useful or sweet
advice, like a mother would give. This advice is then filled into a Babbly template,
which includes multiple ways her character might speak to people when giving
the advice.

Bot Behaviour JeannineBoﬂE has a reply behaviour that will always give
advice to OctaafBot whenever he brags, and to other tweets from her timeline
and mentions every so often. The other reply behaviour she uses on OctaafBot
is continuing his brag by saying that he is so good at it because of her, or saying
that she dislikes his brag and claiming it is something he got from his (absent)
dad. An example of her advice can be seen on Figure [5]

16 Thttps: / /twitter.com/OctaafBot. Code: |https://github.com /twinters,/octaaf-bot
17 lhttps: / /twitter.com/JeannineBot. Code: https://github.com /twinters/jeannine-bot
18 https://twitter.com/JeannineBot /status/1009515505290539010

https://twitter.com/OctaafBot
https://github.com/twinters/octaaf-bot
https://twitter.com/JeannineBot
https://github.com/twinters/jeannine-bot
https://twitter.com/JeannineBot/status/1009515505290539010

Modelling Mutually Interactive Fictional Character Conversational Agents 11

NewsTweet: “May moet uitgaan van mislukken Brexit-onderhandelingen”
(“May must assume Brezit negotiations fail.”)
SamsonBot: Whaa De Standaard, ik weet niet zo goed wat dat is, een "mislukten"
Z0.
(“Whaa De Standaard, I am not sure what that is, a “failed”.”)
OctaafBot: Ah, mislukken! Dat is nu toevallig één van mijn specialiteiten! Mijn

Miranda zegt dat ook altijd: "Pa," zegt ze, "zoals jij kan mislukken..."
ja zo misluk ik hé!
(“Ah, failing! Now that happens to be one of my specialties! My Miranda
always says that too: “Dad,” she says, “like you can fail...” Well, that’s
how I fail, you know!”)

JeannineBot: Je weet het, mijn jongen: houd van jezelf.
(“Remember, my boy: love yourself.”)

Fig. 5. An example of JeannineBot giving advice to OctaafBot|E|

5 Findings

5.1 Interactivity

All mentioned bots, except for GertBot, have general reply functionalities that
can be used on any other tweet from the other bots, as well as any input from
other Twitter users or even other Twitterbots. This usually causes interactive
chains between the bots themselves, as well as other Twitter users.

Table 1. Summary of the start month, the followers and the average user interactions

per tweet (= %) on the posts and the replies of all bots, as of the 3th of
September 2019.

Bot Launch # Followers # Posts # Replies Avg. Post Int. Avg. Reply Int.
SamsonBot 10/2017 180 2105 569 0,3145 0,2373
GertBot 10/2017 141 X 2647 X 0,2014
BurgemeesterBot 03/2018 111 1097 246 0,3081 0,2927
AlbertoBot 05/2018 106 X 1492 X 0,4068
OctaafBot 06,/2018 75 612 95 0,1471 0,2211
JeannineBot 06/2018 63 X 970 X 0,1361

The number of followers, tweets and replies as well as the average number of
interactions on posts and replies for these bots are summarised in Table [1} We
can see that the two protagonists (SamsonBot & GertBot) are the most popular
Twitterbots in their number of followers, even when taking into account the
fact that they have had more time to gain more followers. AlbertoBot has the
highest rate of interaction on its tweets. This might be thanks to his behaviour
of following every Twitter user that decides to follow him, and from then on
interact with them when they mention food, giving a notification to this user
of his reply. SamsonBot and BurgemeesterBot have the highest interaction rate

12 T. Winters

of interactions on their posts. This might be due to the fact that Samson has
a wide range of complex behaviours, and his mispronunciations giving rise to
humorous combinations of words. Another explanation might be similar to the
high interaction rates of AlbertoBot, namely due to the fact that SamsonBot
often quote retweets users tweeting about Samson & Gert, and thus giving a
notification to the poster of the original tweet. For BurgemeesterBot, the inherent
absurdism of some of the inverted actions in the speeches might explain his higher
Twitter interactions. The lower OctaafBot interactions could be explained by the
lack of variation that his typical bragging sentence has, especially given that the
text in the slots is relatively less text than in BurgemeesterBot’s template. This
might also be the reason that JeannineBot has such low reply interactions, as
her tweets are usually lengthy due to long template sentences, and long advice
texts from WikiHow.

5.2 Examples

An example of a conversation including most of the discussed bots can be seen
in Figure [f] Several Twitter users often like provoking the bot by either tagging
them in conversations, or talking about food while being followed by AlbertoBot,
as depicted in Figure [7]

6 Future Work

6.1 Babbly

There are several extensions that would greatly benefit the further development
of Babbly. First, adding some form of tabling, relations or constraints would be
incredibly useful to make sure that records are following additional constraints,
such as respecting pronouns, or other constraints that must hold within a text
such as alliterations or rhymes. Second, it would be interesting to add more
analytical inference methods for better understanding the generative process,
as has recently been done in other generative processes [5l[7]. Currently Babbly
supports calculating the probability of every option, and calculating how many
different templates are encoded. Adding more inference methods might enable
it to set several parameters in a more intelligent way, allowing users a more
declarative programming approach. Third, it might help to revise the syntax of
the language to be more like other frameworks, or more Pythonic, as this might
help decrease the learning curve for new users. Fourth, it might be interesting
to extend AIML with Babbly to provide a better chatbot framework that allows
for more variation in its responses.

19 https: / /twitter.com /BurgemeesterBot /status,/1009539185299148800
2! https://twitter.com/AlbertBot /status,/1093079877824233472

https://twitter.com/BurgemeesterBot/status/1009539185299148800
https://twitter.com/AlbertBot/status/1093079877824233472

Modelling Mutually Interactive Fictional Character Conversational Agents 13

TwitterUser:

SamsonBot:

GertBot:

OctaafBot:

JeannineBot:

LOL! Wie @SamsonRobot heeft geprogrammeerd is echt geniaal!
(“LOL! Whoever programmed @SamsonRobot is truly a genius”)
Mwoh meneer Recht Ite, ik weet niet zo goed wat dat is, een "de
programmeurd" zo.

(“Mwoh Mr. Straight Ite, I don’t know very well what that is, a "de
programmerd" like that.”)

Maar neen Samson, "geprogrammeerd"! Dat is het schrijven van een
computerprogramma.

(“But no Samson, "programmed"! That is writing a computer pro-
gram.”)

Ah, het schrijven van een computerprogramma zijn! Dat is nu toevallig
één van mijn specialiteiten! Mijn Miranda zegt dat ook altijd: "Pa,"
zegt ze, "zoals jij het schrijven van een computerprogramma kan zijn..."
ja zo ben ik het schrijven van een computerprogramma hé!

(“Ah, being writing a computer program! Now that happens to be one
of my specialties! My Miranda always says that too: "Dad," she says,
"the way you can be writing a computer program ..." Yes, that’s how
I’'m the writing of a computer program!”)

Je weet wat ik je heb gezegd, hé! Plan je volgende evaluatie met je
leidinggevende door specificke doelen te stellen en vast te leggen hoe
deze doelen geévalueerd worden.

(“You know what I told you! Plan your next evaluation with your su-
pervisor by setting specific goals and recording how these goals are eval-
uated.”)

BurgemeesterBot:Ah! Toevallig heb ik nog een toespraak liggen over leidinggevende!

Het gaat als volgt: Aheuum. Aheuuuum. Aheum. Aan allen die je sterke
en zwakke punten bepalen: proficiat. Aan allen die niet je sterke en
zwakke punten bepalen: ook proficiat.

(“Ah! Coincidentally, I still have a speech about a supervisor! It goes
as follows: Aheuum. Aheuuuum. Aheum. To all who determine your
strengths and weaknesses: congratulations. To all who do not determine
your strengths and weaknesses: also congratulations.”)

Fig. 6. An example Twitter conversation between the botﬁ

TwitterUser:

AlbertoBot:

JeannineBot:

als niemand reageert, is daar nog altijd albertbot.... (aardappelgratin)
(“If no one responds, there is always albertbot (potato gratin)”)
Oooh mjammieee! Aardappelgratin! Tk hou zo enorm van aardappel-
gratin!

(“Oooh yum! Potato gratin! I love potato gratin so much!”)

Ah, ik heb een hobbyclubtip daarover! Kies ervoor om van het leven
te houden.

(“Ah, I have a hobby club tip about that! Choose to love life.”)

Fig. 7. Twitter user provoking AlbertoBot using food, followed up by a reply from

JeannineBo

14 T. Winters

6.2 Twitterbots

The Twitterbots themselves could be improved by incorporating some other
frameworks for different purposes. First, it might be useful to implement more
behaviours in these bots, possibly relating more to building an actual plot, e.g.
by using plot generators [I0JII]. This would however decrease the independence
of each bot, since they would most likely need some central system other than
Twitter to communicate about the overall plot plans. Second, a useful upgrade
to the system would be learning what type of tweets are most interacted with by
Twitter users, and tweak its generative process to generate more of these types
of tweets [19120].

7 Conclusion

In this paper, we introduced a new text generation language called Babbly of-
fering tight and elegant control over the probabilities of the templates, and by
extend over the generated texts. We also created a framework for easily mod-
elling complex Twitterbot behaviours, namely their post behaviour and their
reply behaviour and the streams of tweets they are listening to. Afterwards, we
demonstrated their use in modelling fictional characters as conversational agents
by creating a complex network of six independent, conversational multi-agent
system of Twitterbots. We then showed that these new bots are appreciated by
their users. This indicates that these new frameworks can be valuable tools for
other creators of conversational agents, especially in multi-agent settings.

Acknowledgements

This work was partially supported by Research foundation - Flanders (project
(G.0428.15).

References

1. Abdul-Kader, S.A., Woods, J.: Survey on chatbot design techniques in speech
conversation systems. International Journal of Advanced Computer Science and
Applications 6(7) (2015)

2. Brandtzaeg, P.B., Fglstad, A.: Why people use chatbots. In: International Confer-
ence on Internet Science. pp. 377-392. Springer (2017)

3. Colton, S., Charnley, J.W., Pease, A.: Computational creativity theory: The face
and idea descriptive models. In: ICCC. pp. 90-95 (2011)

4. Compton, K., Kybartas, B., Mateas, M.: Tracery: An author-focused generative
text tool. In: Schoenau-Fog, H., Bruni, L.E., Louchart, S., Baceviciute, S. (eds.)
Interactive Storytelling. pp. 154-161. Springer International Publishing, Cham
(2015)

5. Cook, M., Colton, S., Gow, J., Smith, G.: General analytical techniques for
parameter-based procedural content generators. In: 2019 IEEE Conference on
Computational Intelligence and Games (CIG). pp. 1-8. IEEE (2019)

Modelling Mutually Interactive Fictional Character Conversational Agents 15

6. Cook, M., Colton, S., Pease, A., Llano, M.T.: Framing in computational creativity—
a survey and taxonomy. Proceedings of the 10th International Conference on Com-
putational Creativity pp. 156-163 (2019)

7. Cook, M., Gow, J., Colton, S.: Danesh: Helping bridge the gap between procedural
generators and their output. Proc. PCG Workshop (2016)

8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. vol. 10, pp. 707-710 (1966)

9. Navarro, G.: A guided tour to approximate string matching. ACM computing sur-
veys (CSUR) 33(1), 31-88 (2001)

10. Riedl, M.O., Young, R.M.: Narrative planning: Balancing plot and character. Jour-
nal of Artificial Intelligence Research 39, 217-268 (2010)

11. Riedl, M.O., Bulitko, V.: Interactive narrative: An intelligent systems approach.
Ai Magazine 34(1), 67-67 (2013)

12. Shawar, B.A., Atwell, E.: Different measurements metrics to evaluate a chatbot
system. In: Proceedings of the Workshop on Bridging the Gap: Academic and
Industrial Research in Dialog Technologies. pp. 89-96. NAACL-HLT-Dialog ’07,
Association for Computational Linguistics, Stroudsburg, PA, USA (2007), http:
//dl.acm.org/citation.cfm?1id=1556328.1556341

13. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433-460
(1950), |http://www.jstor.org/stable/2251299

14. Veale, T., Cook, M.: Twitterbots. MIT Press (2018)

15. Wallace, R.S.: The anatomy of alice. In: Parsing the Turing Test, pp. 181-210.
Springer (2009)

16. Winters, T.: Generating philosophical statements using interpolated markov mod-
els and dynamic templates. In: 31st European Summer School in Logic, Language
and Information Student Session Proceedings. pp. 181-189. Riga, Latvia, ESSLLI
(Aug 2019)

17. Winters, T.: Generating dutch punning riddles about current affairs. 29th Meeting
of Computational Linguistics in the Netherlands (CLIN 2019): Book of Abstracts
(01 2019)

18. Winters, T., Mathewson, K.W.: Automatically generating engaging presentation
slide decks. In: Computational Intelligence in Music, Sound, Art and Design - 8th
International Conference, EvoMUSART. Ekart, A., Lecture Notes in Computer
Science. Springer, Cham (2019)

19. Winters, T., Nys, V., De Schreye, D.: Automatic joke generation: Learning humor
from examples. In: Distributed, Ambient and Pervasive Interactions: Technologies
and Contexts. vol. 10922 LNCS, pp. 360-377. Streitz, Norbert, Springer Interna-
tional Publishing (2018)

20. Winters, T., Nys, V., De Schreye, D.: Towards a general framework for humor
generation from rated examples. Proceedings of the 10th International Conference
on Computational Creativity pp. 274-281 (2019)

http://dl.acm.org/citation.cfm?id=1556328.1556341
http://dl.acm.org/citation.cfm?id=1556328.1556341
http://www.jstor.org/stable/2251299

	Modelling Mutually Interactive Fictional Character Conversational Agents

