
Towards Automated Grading of UML Class
Diagrams with Machine Learning

Dave R. Stikkolorum1[0000−0001−8935−1605], Peter van der
Putten1[0000−0002−6507−6896], Caroline Sperandio2, and

Michel R.V. Chaudron3[0000−0001−7517−6666]

1 LIACS, Leiden University, The Netherlands
2 ESIEE-Amiens, France

3 Chalmers and University of Gothenburg, Sweden

d.r.stikkolorum@liacs.leidenuniv.nl,

p.w.h.van.der.putten@liacs.leidenuniv.nl,

caroline.sperandio@esiee.org, chaudron@chalmers.se

Abstract. This paper describes an exploratory study on the application
of machine learning for the grading of UML class diagrams. Bachelor stu-
dent pairs performed a software design task for learning software design
with the use of UML class diagrams. After experts had manually graded
the diagrams, we trained a regression model and multiple classification
models. Based on the results we conclude that prediction of a 10 point
grading scale can’t be done reliably. Classifying with trained data using
expert consensus and a rubric comes closer to accuracy, but is still not
good enough (a precision of 69%). Future work should include larger
training sets and an exploration for other features.

Keywords: automated grading · software design · class diagrams · UML

1 Introduction

Many university programs, including ours, support a learning by doing ap-
proach for learning software design. Software design is known to be a discipline
that needs to facilitate students with a lot of of exercise time. For large groups
of students, lecturers face an enormous amount of assignments to grade. In clas-
sical lectures, accompanied with practice labs, 200 students or more are not an
exception. Grading a single class diagram can easily take 10 to 15 minutes per
student. Hence, the grading of practical assignments and running practice labs
has a high demand on the presence of lecturers and teaching assistants.

In addition, it is a challenge for teachers to provide students with immediate
feedback when the need arises. Moreover, most software design assignments do
not have a single right answer. There a multiple solutions that solve a particular

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

2 Stikkolorum, van der Putten, Sperandio and Chaudron

problem. Novice software designers lack the experience to recognise the solution
space. Therefore it is difficult for students to perform self-evaluations of their
solutions. This is a pity, because self-evaluation, supported by automated eval-
uation, would enable students to practice at home more often in addition to
their university hours, at their own pace. Further, it enables students to take
small steps while practising their task. In summary, a system that grades stu-
dents’ design assignments would decrease the demand on the lecturers’ time and
potentially offer faster feedback.

This paper reports on an early exploration of the possibility of using machine
learning for the automatic grading of students’ work. The main research question
is: How can machine learning contribute to the automated grading of software
design class diagrams tasks?

By answering the research question we aim to improve our (online) learning
approaches. Integrated automated evaluation can enrich our learning environ-
ments. Future learning environments would be mature environments for practice
and testing. In addition to grading, machine learning could improve feedback
mechanisms such as our feedback agent [1]. These rich learning environments
enable students to reflect on their tasks more often. Moreover, in cases of mas-
sive online courses, manual grading is not an option anymore. Overall automated
evaluation can decrease the workload of lecturers.

We approached our research as follows. Student pairs were given a UML
class design task, and in total 99 pairs were graded by 3 experts. Features were
extracted from the UML models, and models were built to predict the grades.
Rule based tools for UML tasks exist, as well as machine learning based ap-
proach for grading programming assignments, but to our knowledge our paper
is the first to study how a machine learning based could be used to grade UML
modeling assignments. Note that our work is exploratory, and with that in mind
our preference is to present results for a simple approach first over using more
technically sophisticated approaches.

The remainder of this paper is structured as follows: Section 2 discusses
related work. Section 3 presents the research method we used. The results are
presented in Section 4 and discussed in Section 5. Section 6 concludes the paper.

2 Related Work

For the automated evaluation of software analysis and design assignments with
the use of UML modelling there are several approaches that use an example
solution for comparison with the student’s solution.

Hasker et al. present their tool: UMLGrader [4]. It compares student solutions
against a standard solution. They supplied the students with a very constrained
assignment and therefore minimize the solution space. By repeating their sub-
missions students are guided towards an acceptable solution. Despite the name,
the systems doesn’t grade but only produces a binary pass-fail decision. The
grading is theory based, i.e. based on predefined criteria, not machine learning
model based. UMLGrader is based on UMLint, a UML diagram defect identifier

Towards Automated Grading of UML Class Diagrams 3

[5], especially developed for students to learn the UML notation and not software
design.[4]

Striewe et al. present a static analysis approach for automated checks on UML
diagrams with the help of rules that are executed on graphs that represent the
content of a diagram [8]. Also, they focus on behavioural diagrams and present
their approach for evaluating activity diagrams [9].

Bian et al. propose a grading algorithm that uses a syntactic, semantic and
structural matching against a template solution [2]. Their approach uses meta-
models to map the teachers solution with the student solutions and to grade
model elements. In a case study 20 students were automatically graded with a
14% difference from the lecturer’s grades.

In our own research with our educational UML tool WebUML [7] we intro-
duced a pedagogical feedback agent [1]. The feedback agent also compares the
solution with a standard solution. We use synonyms for providing some flexi-
bility. We did not use the feedback agent for grading but for guiding feedback
during software design tasks.

For the automated evaluation of student solutions for programming assign-
ments there are examples of the application of machine learning. A big advantage
of using source code is that it can be tested. This is not the case for software
designs when using a non domain specific language, such as UML.

Srikant et al. demonstrated an approach for grading practical assignments
for programming assignments [6]. Manual grading was done based on a 5 points
scale rubric. The precision range of their research results is 55%-77%, based
on experiments with a sample size of 84-294 students. Based on the findings
of Srikant et al., Boudewijn explores the use of machine learning for predicting
the manual grading of Java assignments in relation to the automation of hiring
processes [3]. In addition to Srikant et al. semantic features were added to the
test set. She did not find this to be significant better that without the semantic
features. However, it seems that the features have a positive influence on the
test case accuracy.

To our knowledge, tools for the automated grading of software design assign-
ments are scarce and there are no tools that use machine learning for predicting
the grades.

3 Method

This section describes the method we used for our research. First we present
the overall research approach. Second, we present the participants, explain the
students’ design task and the manual grading process of the assignments. Sub-
sequently we explain the features that were extracted from the data we use. We
close with explaining how we build and analyse our models.

3.1 Overall Approach

We performed two types of grading approaches: one in which the graders divided
the grading work (experiment 1) and one in which the graders individually looked

4 Stikkolorum, van der Putten, Sperandio and Chaudron

Students perform
learning task

Tank Game
Task Description

Expert A Grades

Expert B Grades

Expert C Grades

Experiment 1:
Combine
grades

Experiment 2:
Form

consensus
about Grades

Class Diagrams

Class Diagrams

Extract Features

Final Manual
Grades

Feature Set

Experiment
Data

Combine

Run Machine Learning
Experiments in Weka

Results

Fig. 1: Overall Research Approach

at all the work based on a rubric and had to come to a consensus (experiment
2) Figure 1 shows the overall approach which consisted of the following steps:

1. Task Performance – Students performed a practical learning task, designing
a class diagram for a game.

2. Expert Grading – three experts manually graded the produced UML class
diagrams. For experiment 1 the experts divided the workload by grading their
own part of the student submissions. For experiment 2 all experts graded all
submissions and a final grade list was composed based on the consensus of
the experts.

3. Defining and extracting the features – Next to an image representation, the
class diagrams’ actual values (e.g. class name, attribute name, multiplicity
value etc.) and the UML element type themselves (e.g. class, operation,
association etc.) were recorded. A selection from these characteristics was
made and used as features for conducting the machine learning experiments.

4. Experiments with various machine learning algorithms – In Weka’s Exper-
imenter we ran classification and regression experiments with the use of
several well known methods and algorithms, such as the random forest al-
gorithm.

3.2 Participants

We invited 120 student pairs to perform a class design task. After cleaning
the data 99 student pairs remain. The cleaning consisted of incomplete assign-
ments and removing outliers. The students followed the third year of a bachelors
program in Computer Science. They were familiar with UML, software design
principles and programming. The lecturers of the university embedded our ex-
periment in the practical part of their course. The students were used to work
in pairs.

Three experts, one lecturer and two PhD students, performed the grading of
the students’ work. A rubric support their manual grading. The grading scales

Towards Automated Grading of UML Class Diagrams 5

that were used, were a 10 points (experiment 1) and a 5 points (experiment 2)
scale. Consensus about the grade was discussed live or by (video) conference
calls.

3.3 Assignment

All participants worked on the same assignment. The assignment was to model a
class diagram for a tank game (Appendix A). The solution contains 10-12 classes
using attributes, operations, named associations, inheritance and multiplicity.
The assignment is chosen because it is representative for the students’ study
level.

The class diagram is created online with our WebUML editor [7]. The editor
is capable of saving the diagram to a XMI file, a standard file format for UML
diagrams, and an image file in png4 format.

Table 1: Conversion table grading

10 points 1 2 3 4 5 6 7 8 9 10
5 points 1 2 3 4 5
3 points fail pass good

3.4 Grading

The experts graded the students on a 10-point scale. For experiment 1 an expert
graded a part of the students’ work. The three expert grades were combined
later. In addition, the grading of experiment 1 was done with two extra scales:
a 5-point – and a 3-point scale. The extra scales were derived from the 10-point
grades, and were not the result of an independent grading activity. For all the
scales, see the overview in table 1.

For experiment 2 the experts graded based on a rubric that uses a 5 point
scale (Appendix B) and formed a consensus grade later. There is no 3 points
scale translation, because in experiment 1 this is derived from the 10 points
scale, which is not used in experiment 2.

3.5 Feature Extraction

The features that are used for training our model are extracted from the XMI
file that contains the student’s solution. Together with the experts’ grades the
features are stored in a database. In this research we used two type of features:
i) a generic set, which focused on the presence of important elements and the use

4 https://fileinfo.com/extension/png

6 Stikkolorum, van der Putten, Sperandio and Chaudron

Table 2: List of features
Attribute code Description

GENERIC FEATURES
ICC Important Class Count
IATC Important Attribute Count
IOC Important Operation Count
IASC Important Association Count
IIHC Important Inheritance Count
IAGRC Important Aggregation Count
ICOC Important Composition Count
IINC Important Realisation Involving Inhertance Count

SPECIFIC FEATURES
TANK C Class Tank Present
BULLET C Class Bullet Present
SHELL C Class Shell Present
WORLD LEVEL C Class World/Level Present
SCORE C Class Score Present
PLAYER USER C Class Player Present
TANK AT Attribute in Tank Present
BULLET AT Attribute in Bullet Present
WORLD LEVEL AT Attribute in World/Level Present
SCORE AT Attribute in Score Present
TANK O Operation in Tank Present
BULLET O Operation in Bullet Present
WORLD O Operation in Bullet Present
SCORE O Operation in Bullet Present
PLAYER O Operation in Bullet Present
TANK BULLET AS Association between Tank and Bullet
TANK TANK AS Self-association of Tank
TANK PLAYER AS Association between Tank and Player
GAME LEVEL AS Association between Game and Level
TANK SCORE AS Association between Tank and Score
TANK IH Inherits from Tank
AMMO IH Inherits from Ammo
BULLET IH Inherits from Bullet
TANK WORLD Aggregation - Tank part of World
SCORE WORLD Aggregation - Score part of World

of specific structures (such as e.g. inheritance or aggregation). And ii), a specific
set that focuses on the specific use of elements that carry a specific name (or
variation thereof).

The data sets that were used for building prediction models consisted of
a feature set in combination with one of the grading scales used as classifier.
A feature set consisted of all features (generic + specific) or only the generic
features. The features are listed in table 2.

Towards Automated Grading of UML Class Diagrams 7

One Two Three Four Five Six Seven Eight Nine Ten

Grade distribution 10 points scale − Experiment 1 (N=99)

0
5

10
15

20
25

Fig. 2: Grade distribution 10 points
scale - Experiment 1

One Two Three Four Five

Grade distribution 5 points scale − Experiment 1 (N=99)

0
10

20
30

40

Fig. 3: Grade distribution 5 points
scale - Experiment 1

3.6 Modeling

For analysing the data and running the machine learning experiments we used
Weka5 (version 3.8.3). We built classification and regression models using a range
of algorithms. We evaluated the classification models using accuracy and AUC,
through ten runs of five and ten fold cross validation (five fold results omitted for
brevity). The regression models were evaluated by analysing the mean absolute
error (again, five fold results omitted for brevity).

4 Results

First, we present the distribution of the grades for the various scales. Next, we
will present the results for the various classification and regression models. For
both the classification model-table as well as the regression models, the results
are compared with majority vote and predicting the overall average (ZeroR), as
a baseline benchmark for the other models.

4.1 Grade distribution

Figures 2, 3 and 4 show the distribution of the grades for experiment 1 using a 3-,
5- and 10-point scale. Figure 5 shows the distribution for experiment 2. For the
second experiment, the experts were able to come to a consensus for 85 student
submissions. As can be seen, the distribution is non-uniform and skewed, and
this will be taken into account when interpreting the model results.

5 https://www.cs.waikato.ac.nz/ml/weka/

8 Stikkolorum, van der Putten, Sperandio and Chaudron

Fail Pass Good

Grade distribution 3 points scale − Experiment 1 (N=99)

0
10

20
30

40
50

Fig. 4: Grade distribution 3-pnts scale
- Experiment 1

One Two Three Four Five

Grade distribution 5 points scale − Experiment 2 (N=85)

0
5

10
15

20
25

30

Fig. 5: Grade distribution 5-pnts scale
- Experiment 2

4.2 Classification models

For the classification models, we evaluate the performance of the models by two
measures: accuracy (percentage correct) and AUC (area under the ROC curve).
To take the skewedness and non uniformity of the outcome (grade distribution)
into account, accuracies are compared against majority vote, and it was also one
of the reasons to include AUC.

Table 3 shows the analysis of the accuracy of the different prediction models.
What can be observed is that the coarses the grading scale gets in the first
experiment, the better the performance of the model is – which is to be expected.
The best accuracy is found in the second experiment. This experiment delivers
a significant accuracy of 69.42. Compared to the majority vote baseline (ZeroR)
of 38.82 this gives the best result.

In addition to the accuracy, Table 4 shows the AUC. We did to double check
our findings for the accuracy. The AUC values support our finding that the
random forest algorithm has the best performance to build the model.

4.3 Regression models

Table 5 shows the results for the regression models. We analysed the mean
absolute error (MAE). Which means that if we use regression as a prediction
model, using the linear or random forest algorithm, the best models will be
between 0.47-0.56 point off at best. Although significant, in comparison with
just giving everyone the average grade (ZeroR, MAE = 0.71) this is not a large
difference.

Towards Automated Grading of UML Class Diagrams 9

Table 3: Classification experiment 1 and 2 - accuracy (10 runs, 10 fold). Values
in italics are significantly better than ZeroR at the 0.05 level.

Dataset ZeroR logistic simple-log 1-nn dec. table dec. tree rnd forest rnd tree naive bayes
all 10 1st 27.30 30.89 33.57 32.98 37.31 29.07 37.44 32.71 34.92
generic 10 pts 1st 27.30 32.2 32.88 42.30 28.31 33.32 42.76 39.30 39.02
all 5 1st 46.47 45.78 59.66 54 58.41 52.73 58.02 47.38 40.51
generic 5 pts 1st 46.47 49.61 53.34 51.06 54.64 51.89 53.97 46.62 51.52
all 3 pts 1st 52.58 57.06 62.03 62.82 68.79 59.76 66.30 59.89 64.46
generic 3 pts 1st 52.58 64.14 62.33 64.66 60.46 60.57 65.24 64.30 65.20
all 5 pts 2nd 38.82 51.49 56.12 58.88 50.92 60.33 64.00 55.19 57.89
generic 5 pts 2nd 38.82 61.33 59.08 54.49 46.76 66.10 69.42 59.01 55.76

Table 4: Classification experiment 1 and 2 - AUC (10 runs, 10 fold). Values in
italics are significantly better than ZeroR at the 0.05 level.

Dataset ZeroR logistic simple-log 1-nn dec. table dec. tree rnd forest rnd tree naive bayes
all 10 1st 0.50 0.62 0.66 0.52 0.72 0.59 0.73 0.56 0.64
generic 10 pts 1st 0.50 0.63 0.63 0.68 0.57 0.67 0.76 0.65 0.69
all 5 1st 0.50 0.61 0.65 0.64 0.65 0.59 0.74 0.60 0.59
generic 5 pts 1st 0.50 0.61 0.62 0.59 0.62 0.62 0.67 0.57 0.63
all 3 pts 1st 0.50 0.70 0.79 0.71 0.80 0.70 0.84 0.67 0.85
generic 3 pts 1st 0.50 0.81 0.81 0.71 0.72 0.73 0.84 0.71 0.83
all 5 pts 2nd 0.50 0.72 0.82 0.77 0.70 0.75 0.87 0.69 0.83
generic 5 pts 2nd 0.50 0.86 0.85 0.74 0.58 0.76 0.86 0.67 0.84

Table 5: Regression models - MAE (10 runs, 10 fold). Values in italics are sig-
nificantly better than ZeroR at the 0.05 level.

Dataset ZeroR linear simple linear random tree

all 10 1st num 1.34 1.00 1.28 1.08
generic 10 pts 1st num 1.34 0.99 1.24 1.09
all 5 1st num 0.74 0.62 0.63 0.62
generic 5 pts 1st num 0.74 0.57 0.62 0.62
all 5 pts 2nd num 0.71 0.55 0.56 0.58
generic 5 pts 2nd num 0.71 0.48 0.56 0.47

10 Stikkolorum, van der Putten, Sperandio and Chaudron

5 Discussion

In this section we answer our main research question: How can machine learning
contribute to the automated grading of software design class diagram tasks?).
In order to do this we reflect on the models of Section 4. In addition we discuss
threats to validity and discuss future work.

5.1 Reflection on models

In general, based on the results, we can say that for now it is not reliable enough
to apply the model to grade students class diagrams automatically on a 10 point
scale. The highest accuracy we have achieved is 42.76%. What we can say is
that the rougher the grading scale gets, the higher the accuracy, which is to be
expected. In the first experiment this leads to a top accuracy of 59.66% using a
5 point (46.47% ZeroR) and 68.79% (52.58% ZeroR) using a 3 point scale.

But how applicable would such a coarse scale grading then be? It could
be used in online training systems where the emphasis lies on getting s rough
indication of quality of the solution. Also, often at the universities, practical
parts of SE courses only require a Pass-Fail. That said, it would lack feedback
about the errors made for the students. In addition, compared to the majority
vote we can say that the models do not perform that much better.

In the second experiment we achieved a accuracy of 69% using a 5 point scale
and trained by a manual 5 point scale grading. Also, the graders looked at all
the models and came to a consensus. In this case not only the accuracy is higher,
but also the delta with ZeroR (39%) is larger.

From the results it is not clear that adding specific features is a better ap-
proach than just using the generic features. Looking at the random forest column
we observe that the generic features perform better in the 10 points scale of ex-
periment 1 and in experiment 2. However, this is not consistent throughout all
results. Even if there is a significant difference, it is not a big difference.

5.2 Threats to validity

We are aware of the validity threats in this research. We discuss the following:
The experts graded a part of the submitted assignments twice in the second
experiment. This could introduce a bias. We expect that the use of the rubric
and the consensus of the experts lead to a high accuracy and that it did not
negatively influenced the experiment.

The features in this case are specific to the assignment. On one hand one
could argue we cannot generalize the approach presented is this paper. On the
other hand the process that delivers the features could be repeated in other cases
with other assignments. Future work should confirm the generalizability of the
approach.

In general we are aware that a larger number of subjects would yield a more
accurate model when using machine learning.

Towards Automated Grading of UML Class Diagrams 11

5.3 Future work

The goal of this work was not to build the best model possible, it was to explore
the feasibility of this use case. If the grading task is very well defined, for instance
through a rubric, there would be no need to use a machine learning approach
as the rubric could simply be automated. However, it becomes more interesting
if the rubric is not well known, elements may be missing, or the weighting of
various elements is not well defined.

One angle to future work would be to repeat these experiments with more
instances, and different features. Also grading tasks that are less well defined,
such as the quality of the layout of the diagram, could lend itself better to a
machine learning based approach. What will remain challenging is to develop
models that would generalize and validate across different exercises, this could
be evaluated with a separate validation exercise.

In this paper we constrained the evaluation of students’ work to grading.
Future research should explore the application of machine learning for providing
feedback to students during the performance of software design tasks.

6 Conclusion

In this paper we presented our approach for using machine learning for building
models for the prediction of grades for software design assignments. We collected
the data of submitted software design assignments of bachelor student pairs.
With this data we performed two experiments in which we built models for
prediction with machine learning software.

Based on the results of the first experiment we conclude that using machine
learning for a classification that uses the same precision as a 10 point grading
scale is not accurate. Classifying in a 3 points (fail, pass, good) or maybe even
using a 2 points (fail, pass) comes closer to accuracy, but is still not good enough
(an accuracy of 65.24 for 3 points). The models of the second experiment per-
formed better. The best model had an accuracy of 69.42 using a 5 points grading
scale. Again, this model is not accurate enough, but heads towards an acceptable
value.

Currently we could integrate a prediction model in online training software
to give users a rough indication of the quality of their models. Future work
should include larger training sets and the exploration of the application within
e-learning environments and for other features such as providing feedback.

References

1. Anckar, H.: Providing Automated Feedback on Software Design for Novice Design-
ers. BSc thesis, Goteborg University (2015)

2. Bian, W., Alam, O., Kienzle, J.: Automated grading of class diagrams. In: Proceed-
ings of the Educators’ Symposium at the 22nd International Conference on Model
Driven Engineering Languages and Systems (2019)

12 Stikkolorum, van der Putten, Sperandio and Chaudron

3. Boudewijn, N.: Automated Grading of Java Assignments. Master’s thesis, Utrecht
University, The Netherlands (2016)

4. Hasker, R.W.: UMLGrader: an automated class diagram grader. Journal of Com-
puting Sciences in Colleges pp. 47–54 (2011)

5. Hasker, R.W., Rowe, M.: UMLint: Identifying defects in uml diagrams. In: American
Society for Engineering Education. American Society for Engineering Education
(2011)

6. Srikant, S., Aggarwal, V.: A system to grade computer programming skills using
machine learning. Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining - KDD ’14 pp. 1887–1896 (2014)

7. Stikkolorum, D.R., Ho-Quang, T., Chaudron, M.R.V.: Revealing students’ uml class
diagram modelling strategies with webuml and logviz. In: 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications. pp. 275–279. IEEE
(2015)

8. Striewe, M., Goedicke, M.: Automated checks on uml diagrams. In: Proceedings
of the 16th Annual Joint Conference on Innovation and Technology in Computer
Science Education. pp. 38–42. ITiCSE ’11, ACM, New York, NY, USA (2011)

9. Striewe, M., Goedicke, M.: Automated assessment of uml activity diagrams. In:
ITiCSE. p. 336 (2014)

A Appendix: Tank Assignment

The Modeling Task – a Tank Game6

In this task you will design a game with use of the UML class diagram. You do
not need to use packages in this assignment. The description of the game is as
follows: A player (user) controls a certain tank. This tank is a Panzer Tank, a
Centurion Tank or a Sherman Tank. They fire bullets and Tank shells. Bullets
can be Metal, Silver or Gold bullets.

A tank moves around a world (level). The aim is to destroy all other tanks
in the world. After a world has been completed the tank advances to the next
world. A list of all the worlds visited is kept.

An entire game consists of 8 levels. A world contains a maximum of 20 tanks
that compete for victory. Each tank remembers which tanks it has destroyed in
the past. The score for each level is kept by a scoreboard that gets notified by the
individual tanks each time an opponent is shot. The players control their tanks
through an interface allowing for steering, driving (reverse / forward), switching
ammo and firing.

6 text: B. Karasneh

Towards Automated Grading of UML Class Diagrams 13

B Appendix: Grading Rubric

Table 6: Class Diagram Rubric for Grading Design Modelling
Grade Judgement, criteria description

1 The student does not succeed to produce a UML diagram related to the task.
He/she is not able to identify the important concepts from the problem domain
(or only a small number of them) and name them in the solution/diagram.
The diagram is poor and not/poorly related to problem description with a lot
of errors: high number of wrong uses of UML elements mostly no detail in the
form of attributes or operations

2 The student is not able to capture the majority of the task using the UML
notation. Most of the concepts from the problem domain are not identified.
The detail, in the form of attributes or operations, linked to the problem
domain is low. Some elements of the diagram link to the assignment, but too
much errors are made: misplaced operation / attributes non cohesive classes
few operation or attributes are used

3 The student is able to understand the assignment task and to use UML notions
to partly solve the problem. The student does not succeed to identify the most
important concepts. A number of logical mistakes could have been made.
Most of the problem is captured (not completely clear) with some errors:
missing labels on associations missing a couple important classes / operations
/ attributes Logical mistakes that could have been made: wrong use of different
types of relationships wrong (non logical) association of classes

4 The student captures the assignment requirements well and is able to use UML
notations in order to solve the problem. Almost all important concepts from
the problem are identified. Some (trivial) mistakes have been made: Just one
or two important classes / operations / attributes are missing Design could
have been somewhat better (e.g. structure, detail) if the richness of the UML
(e.g. inheritance) was used.

5 Student efficiently and effectively used the richness of UML to solve the assign-
ment. The problem is clearly captured from the description. concepts from the
domain / task are identified and properly named The elements of the problem
are represented by cohesive, separate classes (supports modularity) with a sin-
gle responsibility In the problem domain needed attributes and operations are
present Multiplicity is used when appropriate Naming is well done (consistent
and according to UML standard) Aggregation / Composition / Inheritance is
well used No unnecessary relationships (high coupling) are included

	Towards Automated Grading of UML Class Diagrams with Machine Learning

