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Abstract. Nowadays, numerous Internet of Things devices are producing large
amounts of data. This data originates from the environment in which these de-
vices are operating. In theory, these devices sample the environment in a way
which is closest to reality, but in practice, this is far from ideal. On the one hand,
this is due to imperfections in the sensory devices. On the other hand, this could
be due to a complex or volatile environment, which is difficult to perceive for
such sensors. This problem can be solved by adding external environmental data
to simplify the perception, but the quality of that external data is unknown. In
both cases, there is a degree of uncertainty in the data. In this paper, we introduce
a concept in which the quality of data is measured and is incorporated in a par-
ticular Decision-Making Process based on machine learning paradigms. In this
way, the decisions are made with knowledge about that quality. We position this
concept in the current State-of-the-Art regarding data quality and machine learn-
ing architectures. Additionally, this paper elaborates on a hypothetical example
using the proposed concepts.
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1 Introduction

These days, a lot of data is being generated by numerous interconnected Internet of
Things (IoT) devices. Many different decision-making processes (DPs) rely on this data
to trigger events or control actuators. This can range from climate control applications
and fall detectors to industrial processes and lane keeping assistants in autonomous
driving. However, sometimes these decisions can go wrong. For example, failures in
autonomous vehicles such as Uber or Tesla, and fall detectors that detect false positives
or, even worse, false negatives. The cause of these problems is sometimes due to bad
input data, thus bad decisions are made. In other cases, the input data is technically
correct, but the environment is too complex, difficult or volatile to perceive for sensors.
Therefore, by adding external environmental data, this environment is simplified. How-
ever, in such an environment the quality of this data is unknown and can be variable
over time due to a changing environment. An example is a distributed environment in
which multiple heterogeneous entities are able to sense, act and communicate. By ex-
tension, the root cause of these problems is the difference between algorithms trained
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in a controlled environment, and algorithms deployed in an environment out of our
control.

We can narrow these problems down to the lack of knowledge about the data quality.
Within this research, we aim to incorporate this data quality into the DP, so that deci-
sions are based on that quality. An example of such a DP is a machine learning network.
Based on several data inputs, it generates a certain output or decision. This incorpora-
tion of data quality in such a machine learning process introduces several challenges.
First, an abstract and objective measure of data quality needs to be defined. Second,
this quality field should be introduced to the machine learning network in a viable way,
along with the data itself. Additionally, based on the data and its quality, which can vary
over time, proper decisions should be generated accordingly.

In this paper, we position our vision in the current State-of-the-Art regarding data
quality and the inclusion of it in a DP based on machine learning. This paper is struc-
tured as follows. Section 2 elaborates on data quality; that is, different measuring tech-
niques as well as representations for data quality are discussed. The section concludes
with the positioning of our research in this field. Section 3 discusses several data fu-
sion techniques in a machine learning architecture, followed by the positioning of our
research. Section 4 enlightens several approaches concerning the incorporation of data
quality in a machine learning network. Section 5 elaborates on a hypothetical example
in which the four conceptual approaches are enlightened Finally, section 6 concludes
this paper.

2 Measuring Data Quality

The quality of data can be measured in various ways. First, a context can be created
on this data. According to Kim et al. [8], a context can be seen as information about a
certain situation at the time of a particular interaction. Such information includes raw
sensor data, data of a user interaction, data produced by the application itself, etc. The
quality of this data can be evaluated based on different Key Performance Indicators or
KPIs, such as the accuracy of the data (evaluated by an observed data value and its
expected value), the representation consistency and completeness. The quality of the
created context is also quantifiable; this is called Quality of Context (QoC). Based on
the research of Kim et al. [8§] and Al-Shargabi et al. [1], this QoC can be measured by
several KPIs, which are rather similar to the aforementioned KPIs. Examples are timeli-
ness, reliability, resolution, probability of correctness and completeness. Every KPI for
measuring the QoC is calculable. For example, the timeliness determines the freshness
of the context; i.e., the age of the created context is compared with the prescribed time
span in which the context is valid. This implies that a more fresh context results in a
higher quality. For example, context information that is received a few seconds ago, is
closer to reality than information of the previous day, hence the higher quality. It is clear
that such a Quality of Context provides an objective measure on the quality of data.

Additionally, research has been conducted in providing a quality measure on the content
of the data itself. For example, Berkvens [2] conducted a study regarding Information
Theory. He points out that the conditional entropy of information and the mutual in-
formation are useful metrics when measuring respectively the uncertainty and certainty



of information content. Finally, Karkouch et al. [7] propose a system in which the data
quality of IoT data is enhanced. They do so by first analysing the quality itself (based
on approximately the same KPIs as proposed by [1] and [8]), after which they enhance
the data by several approaches such as data interpolation, deduplication, etc.

In terms of the representation of a quality measure, several in-depth studies have
been conducted. Laranjeiro et al. conducted a survey about data quality [9]. They dis-
cussed the problems that come with low quality data, different techniques to measure
that quality using prescribed metrics, all from several perspectives such as enterprises,
end users and researchers. The authors represented the overall quality of data via differ-
ent quality dimensions. Examples are completeness, accuracy, consistency, etc. These
dimensions correspond to the KPIs mentioned in previous subsection.

Cichy et al. also did a comprehensive survey on data quality, which continues on the
work of Laranjeiro [6]. In this survey, the authors address several frameworks for assess-
ing data quality. The authors also state that the overall data quality can be represented
via relevant dimensions, which correspond to the aforementioned dimensions of [9].

It is clear that the overall data quality is not represented as a single value, but rather
in several quality dimensions. Each dimension assesses another perspective of the data
quality, resulting in a more accurate and complete representation of the quality of data.

In terms of our research, all of the above-mentioned contributions are helpful when
measuring data quality. Each of these works enlightens another aspect of data and its
quality, going from an abstract context measurement to in-depth analysis of the content.
Hence, all of these measurement techniques are useful to obtain clear insights about the
data, thus being advantageous for the subsequent DP.

3 Including data quality in machine learning networks

To incorporate data quality in a machine learning process, the quality should be fed into
the network. Subsequently, by fusing the quality information with the actual data, the
incorporation is achieved. As the quality information can also be considered as data,
this fusion process is called data fusion.

Different techniques exist to perform data fusion. First, Chen et al. propose a method
to improve prediction accuracy for traffic flow predictions, based on spatial-temporal
data with uncertainty [4]. They do so by integrating fuzzy logic with deep learning
techniques. The network is split in two parallel channels: a fuzzy network and a deep
convolutional network. The data is fed to the input, after which it is processed by the
two channels in parallel. The outputs of both channels are then fused together and a
prediction is made by the last layer.

Patel et al. proposed a neural network architecture called NetGated architecture [10].
This network performs data fusion for a LiDAR sensor and a camera, after which it
outputs a steering command for the robot of the authors. The fusion process starts with
a deep convolutional neural network for both sensors. Each network outputs a feature
vector for that sensor. The vectors are concatenated and processed by a fully connected
layer, after which a weight for each feature vector is generated. These weights are mul-
tiplied with the same feature vectors as before (i.e. the outputs from the convolutional
neural networks). Afterwards, these weighted vectors are processed by two fully con-
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nected layers. The fact that weights are generated from these feature vectors and are
multiplied with them, causes this structure to behave as a gate for each vector. In this
way, the influence of each sensor on the global output can be changed adaptively.
Shim and Li propose two optimised variants of the aforementioned NetGated network
[11]. They address the problems that the original version has: (i) the network has an
increased potential of overfitting during the training process, and (ii) the fusion weights
sometimes do not correspond to its originating feature vector as it contains information
about both vectors. The first proposed variant deals with grouping multiple sensors and
their convolutional outputs together to calculate a single weight on that group. Their
structure has five inputs; these inputs are split into two groups of respectively three and
two inputs. After the calculation of both weights, these are multiplied with their cor-
responding group, after which an output can be generated in the same way as in the
original architecture. This approach minimises the overfitting potential of the network.
Additionally, the weights are now more likely to correspond to its group than they did
with its feature in the original version. This is also the downside of the architecture
at the same time; the weight does not contain information about a particular feature.
Therefore, the authors propose a second construction that is based on both the origi-
nal one and their first proposed network. That is, the feature weights are calculated for
each separated input, along with weights calculated on groups of inputs. These weights
of both features and groups are then multiplied with each other, which results in new
weights containing information of both features and groups. This architecture solves
both problems of the original one and shows significant improvements.

Other studies deal with uncertain data in machine learning networks during the training
phases, resulting in robust networks that are able to process uncertain data during eval-
uation. For example Choi et al. conducted a comprehensive study concerning the train-
ing process of neural networks with noisy data and labels [5]. Their proposed network,
called ChoiceNet, is able to learn noisy and corrupt datasets of images (i.e. MNIST and
CIFAR-10) and outperforms the existing networks regarding training accuracy.

The above-mentioned State-of-the-Art provides clear insights and ideas for incor-
porating data quality in a machine learning network. First, the data quality measures
can be fed into the network as a conventional input. In this way, the network learns
itself to deal with these quality measures. Robust networks, such as ChoiceNet from
Choi et al., could benefit from these quality measures in terms of accuracy and robust-
ness during both training and evaluation phases. Another option is to make use of the
aforementioned NetGated networks by [10] and [11]. However, other architectures for
processing the data quality would also be appropriate instead of being limited to a con-
volutional neural network. In this way, we can extract abstract features out of these
quality measures, which can contribute to the fusion weights. Thus, these quality mea-
sures or their abstract features would serve as gate for the feature vectors of the other
inputs. Finally, the work of [4] also proposes a possible approach for the inclusion of
data quality. If these quality measures could act upon the inner logic inside the fuzzy
network, this quality would then have an impact on the fusion process with the deep
learning network and the global output would change accordingly.
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Given the aforementioned techniques concerning machine learning networks and
data quality, we consider four possible approaches that would contribute as improve-
ments to the current State-of-the-Art.

To start, we opt to use a system in which we will incorporate data with its quality
labels, but with an already existing DP. In this way, the DP is fully dependent of the
design choices of the overall system. Consider a system in which no quality labels are
taken into account; such a system is shown in Figure 1a. We introduce a World Model
(WM), which is the internal state of the system; this state will change according to the
incoming data. Therefore, based on this internal state, the DP will calculate a decision.
If we now consider a system in which debased data (i.e. decreased quality due to low
resolution, inconsistency, noise, etc.) and its quality labels are taken into account, the
DP shall not be changed. This means that these quality labels need to be incorporated
into this WM, such that it generates an appropriate state based on those labels. That is,
the WM will shape its output in such a way that the low quality data is treated differently
than if the data was not accompanied by a quality label. As this results in a different
behaviour of the WM, the behaviour of the DP will change indirectly. The recreation of
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the WM can be accomplished by using one of the aforementioned techniques in section
3. Though, ChoiceNet from Choi et al. or a similar network is preferred as it can recreate
an output based on noisy input data, thus ideal for the recreation of our World Model.
The training procedure is as set up as follows. First, we use incoming data which is
considered perfect. By feeding this data into an existing world model, we can collect
the states this model generates (shown in Figure 1a). We consider these states as the
baselines. Next, the same incoming data is used, but its quality is degraded by a known
amount; hence, a quality label can be generated accordingly. Now, the input and output
of the neural network in the training phase are respectively the debased data with its
quality label and the state generated by the original world model. Therefore, the newly
made WM will try to fit as close as possible to the original neural network. When the
training process has finished and the model has proven its feasibility, the next stage is to
use a quality measurement module for imperfect incoming data. This stage is shown in
Figure 1c. A potential issue with this approach is the lack of generalization on different
kinds of data imperfections. As long as the imperfections are similar to the ones learned
during the training phase, the network should be able to generate an appropriate output.
However, if there are imperfections present that are not learned in the training phase,
the generated output could be inaccurate.

The first approach creates a clear view of the possibilities regarding the incorpo-
ration of data quality into the DP, but the methodology has a major flaw. The WM
constantly needs to recreate a perfect state as if it was created with perfect incoming
data instead of debased data; the independent DP is only capable of calculating actions
based on this perfect state. Hence, this regeneration creates an unnecessary complexity
in the architecture. To overcome this complexity, we will add the DP into the learning
process such that the WM and DP have an internal link with each other instead of being
two separate units. Figure 2 shows a schematic of this approach. In terms of implemen-
tation, any of the techniques mentioned in section 3 is applicable. That is, if ChoiceNet
or similar is used, the same decisions would be generated as if perfect data was fed to
the network. Additionally, the NetGated architecture also can draw decisions based on
the quality measures and has the ability to interpret the resulting feature vectors. There-
fore, this network can draw decisions that are the most suitable for a given situation.
However, this feature is out of scope for this approach. The training procedure is simi-
lar to the previous approach. That is, we start from incoming data which is considered
perfect. Based on this data, we are able to collect the action generated by original DP
(shown in Figure 2a). The next stage is shown in Figure 2b, which is similar to the one
shown in Figure 1b. The final step, which is shown in Figure 2c, incorporates a quality
measurement unit. This stage is also similar to the one shown in Figure Ic.

As mentioned before, the first approach establishes a clear view about the possi-
bilities of incorporating quality measures of the incoming data streams. The second
approach resolves a major flaw of the first one: the system does not need to explicitly
regenerate a perfect state that is required for the DP to operate. The World Model and
DP are now one entity with the same behaviour as the two separate entities of the first
approach. The problem in the second approach is that this behaviour is limited to the
behaviour of the original DP. This means that, if this original one has weaknesses in the
process of calculating an action, the newly generated DP has these same weaknesses.



Those are propagated into the newly created DP as the actions of the original DP are
used as baseline. Thus, the new DP is limited to the actions of the original one while
sharing the same flaws. This problem will be solved by using a Reinforcement Learn-
ing technique. The DP will learn itself to calculate the most appropriate action for a
given data stream of a certain situation. Figure 3a shows an environment which gener-
ates perfect data, after which this data is being debased; this is similar to the previous
approaches. The generated action is given back to the environment, resulting in a cor-
responding reward for that action. This reward is given back to the DP, so it takes this
feedback into account when generating a new action. When the learning procedure of
the DP has been successful, the DP is now used in the same way as in the previous
approach. This is shown in Figure 3b. In contrast to the aforementioned approaches,
ChoiceNet or similar is less applicable for this situation. That is, the network has to
draw the most suitable decision for the given situation instead of recreating an output
based on noisy input data. Therefore, the other techniques mentioned in section 3 are
more suitable.

In the previous approach, the DP has the freedom to learn itself the appropriate
actions for a particular situation. The advantage of that approach is that the DP is not
dependent of an already existing one, which may contain some weaknesses. The dis-
advantage of that approach is the gigantic space in which the DP needs to find an op-
timal model, due to the large amount of combinations of different data streams and
their quality measures. This makes the training process much slower, which could be a
bottleneck when designing a DP for a particular application. For example, a DP specif-
ically designed for an autonomous vehicle is not usable in an application designed for
small IoT-devices such as temperature sensors. Therefore, a new DP needs to be trained
specifically for that application, which could take a considerable amount of time. To
overcome this problem, we believe a hybrid approach provides the best of both worlds.
More specifically, we will create a DP based on Supervised Learning (as proposed in
the second approach, shown in Figure 4a and 4b), after which we further improve this
DP via Reinforcement Learning (as proposed in the third approach, shown in Figure
4c). This means that our DP could be based on an already existing application-specific
DP, but it would not be limited to the original one due to the improvements via Rein-
forcement Learning. We also think that the time required to train the model is longer
than required in the second approach, but shorter than in the third approach due to the
head start of the model. Hence, we think this approach solves the drawbacks of the
previous ones, resulting in an overall better approach (shown in Figure 4d). In terms of
implementation, the same machine learning network from the previous approach would
be used as the decisions need to be the most suitable for the given situation.

S Hypothetical Example

In the previous section, this paper proposed four methodologies to incorporate data
quality into a DP. In this section, we form a hypothetical example in which we use
fictional sensor data accompanied by its quality indicator, applied on the four afore-
mentioned approaches. Consider an office room in which multiple temperature sensors
are positioned over the entire room. An example of such a room is shown in Figure 5,
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which is the Intel Berkeley Research Lab [3]. A fictional central heating system creates
a heat map of the entire room, after which the level of each separate heating unit is
adjusted to accomplish a comfortable temperature in the office environment. Consider
a fictional temperature sensor whose updates to the central heating system are lagging
in time by a couple of hours. This means that the data generated by the sensor is not
accurate with respect to the current temperature of the environment. Therefore, we can
determine the quality of the sensor data with respect to the timeliness of the data, which
is low.

In the first approach mentioned in section 4, the WM will take the quality into
account. In this example, the WM can be represented as the heat map of the office room.
Based on this model, the DP adjusts its heating units. As the quality (i.e. the timeliness)
of the aforementioned fictional sensor is low, the WM needs to be aware of this low
quality via the given quality labels; it will treat this low quality data in a different way.
In this example, the WM will not take this sensor data as much into account as it does
with other sensors to generate the heat map of the environment; the other sensors are
considered perfect. Hence, the central heating system is not aware of the low quality
sensor data, but it will behave different nevertheless due to the adapted WM.

In the second conceptual approach, the DP itself will incorporate the quality labels
such that it bases the decisions on those labels. In this example, the DP is based on an
existing central heating process, e.g. a rule-based system. On the one side, the created
neural network will then behave in the same way as the original one does, with the
added ability of taking the quality labels into account. Hence, the low quality sensor
data will not have as much impact on the decision as the high quality sensors have. This
means that the DP will only focus on the sensors that represent the current temperature
instead of also taking the faulty data into account. On the other side, as mentioned in
the previous section, the neural network will be limited to the behaviour of the original
process, which leads to inheriting the same weaknesses as the original one.

In the third conceptual approach, the DP is created from scratch using Reinforce-
ment Learning. This means that the central heating process is not limited to an original
process any more, which leads to a possibly more optimised solution for the office en-
vironment, while also taking the quality of its sensor data into account. Therefore, the



network would be able to take other, possibly more optimised actions if the timeliness
of a particular sensor is low. As mentioned in the previous section, the downside of this
approach is that it can take a long time to reach that optimal solution during the training
stage.

Therefore, regarding the fourth conceptual approach, the newly created network is
first based on an existing heating process, after which it is optimised for the specific
office environment. This results in a head start regarding the Reinforcement Learning
technique. The outcome of this fourth approach is a heating process that is able to
behave in a more optimised way than an existing heating process regarding the office
environment, along with the ability to take a appropriate actions when the quality of a
temperature sensor is low.

6 Conclusion

In this paper, we have proposed a new concept of incorporating data quality in a Decision-
Making Process (DP), which is based on machine learning paradigms. Doing so, the
DP would make more appropriate decisions based on the given quality of its inputs.
We have enlightened the current State-of-the-Art regarding data quality and data fusion
in machine learning, after which we positioned our concept into these topics. We pro-
posed four approaches to achieve this inclusion of data quality. First, we include the
quality into the world model on which the DP bases its decisions, but in the second
approach we include the quality into the DP itself. In the third approach, we propose
the usage of a DP based on Reinforcement Learning techniques. Finally, in the fourth
approach, we propose a hybrid architecture in which we include the quality in a DP
and improve this via Reinforcement Learning. We believe that this last approach is the
most flexible one as it starts from an existing process, but is further improved later on
to gain overall robustness for a broader range of use cases. This paper elaborated on a
hypothetical example focused on a specific IoT application. However, more research is
needed to provide a more thorough answer on our conceptual statements, along with an
elaboration on the generalization for other application domains, different types of data
and their possible quality measurements.
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