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Abstract

With the advent of the pervasive Internet of
Things (IoT) era it is expected to have bil-
lions of entities simultaneously connected to
the network, sharing heterogeneous data to
support disparate applications. Such scenario
will therefore open new challenges as for net-
work management and information exchange
rules. In this context, the increasing data vol-
ume may especially lead Cloud-based services
to be suffering from overload and data traf-
fic consumption increase when serving a huge
number of devices. A potential approach to
address this problem is to edge computing,
including all those enabling technologies able
to move large part of computing close to the
data sources, proving several benefits in terms
of latency reduction, bandwidth optimization
and security [RGXZ17][MTPC19]. Another
aspect impacting the performance is the opti-
mization of the amount of data volumes trans-
mitted by the IoT devices. This task is ac-
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complished by specific data synchronization
protocols and algorithms that are responsible
for information exchange between devices and
cloud. In this direction, we consider a decen-
tralized IoT cloud framework where devices
connect to the data center through an IoT
gateway. Moreover, we present a mechanism
for data synchronization that considers Octod-
iff, a well known tool for data compression,
combined with an adaptive algorithm specifi-
cally tailored to limited, variable, IoT traffic
volumes. By investigating the performance of
the proposed architecture, we show how the
traffic amount generated by IoT cloud-services
can be conveniently reduced.

1 Introduction

People’s lives and habits will reach new breakthroughs
thanks to the introduction of the Internet of Things
(IoT). Being surrounded anytime and anywhere by bil-
lions of things communicating and sharing information
with one another represents the latest step of the in-
teraction between humans and technology.

Such a revolutionary paradigm involves very het-
erogeneous devices, from wearables, smartphones and
computers associated to daily, personal activities, up
to sensors and machinery systems employed for moni-
toring and control smart buildings, industry and cities
[AGM*15]. In this direction, as each IoT device out-
put is characterized by specific structures and fea-
tures, different kind of data are going to be simultane-
ously transmitted through the network. Some exam-



ples are represented by the small size spot measures
typically produced by sensors for environmental mon-
itoring, otherwise high quality and large size videos
and pictures shared between computers. Moreover,
data traffic is driven by the specific application that it
is related to, requiring appropriate quality of service.
For instance, activities like video streaming need to be
supported by high rates and low latency, while many
others are oriented to energy saving, especially when
battery power devices are involved. In general, taking
into account all of these concerns is important in order
to minimize the overall traffic load, but when dealing
with the IoT it becomes essential as the presence of a
large number of devices entails a significant growth of
the amount of data volumes.

The efficient management of network resources is
recognized to be very challenging, especially in cloud-
based networks where the presence of a huge amount of
devices simultaneously performing data synchroniza-
tion may cause bandwidth saturation. Therefore, it
follows that effective protocols for remote data up-
date are necessary to minimize the amount of data
exchanged through the network and, consequently, to
optimize the overall traffic load. Moreover, the reduc-
tion of information to be transmitted returns also to
energy saving for all that IoT devices that are typically
battery powered.

Unfortunately, data synchronization algorithms
originally developed for computer systems badly fit
to the IoT since they are not able to handle hetero-
geneous traffic volumes and their performance do not
consider device power consumption. An example is
given by the rsync algorithm [TM96] representing the
core of many, well known, cloud services like Dropbox.
Given two parties each one storing different version of
the same file (an old one and a newer one), the rsync
algorithm performs a single round synchronization by
recognizing the matching parts between the two file
versions, so that the information to be exchanged is
just that one necessary to make the old file version
updated. In general, good performance are obtained
when the size of files under processing is quite large, on
the other hand, the algorithm suffers from inefliciency
when dealing with small amount of data. So, rsync
may not represent the best solution in the IoT case
where few data are sporadically transmitted (for in-
stance, sensors for environmental monitoring sending
their spot measurements to the data center). Some
other algorithms have been proposed in the literature
with the aim to improve the performance of rsync, such
as that one presented in [YISO8] where reconciliation
techniques are applied to minimize the bandwidth con-
sumption. Other solutions consider instead multiple
round procedures in order to optimize the generated
traffic amount like in [SNT04], but unfortunately un-

desired latency is introduced due to the bi-directional
communications occurring between the two parties in-
volved in the synchronization.

More recently, the problem of data update has been
addressed with a view to IoT scenarios and applica-
tions. In this context, the heterogeneity and variability
of IoT data are addressed in [ZL16] by proposing a re-
mote synchronization based on timestamp and bitmap
to improve the transmission efficiency. Furthermore,
the work in [PCS*18] introduces an rsync-inspired al-
gorithm where the knowledge of data characteristics
are exploited to adaptively tune the synchronization
parameters and optimize the amount of information
to be transmitted.

Finally, the architecture itself characterizing the
cloud services may represent a limit for the perfor-
mance in the IoT context. Indeed, devices at the edge
of the network may be very far from the datacenter
node, so the process of remote data synchronization
could suffer from long latency, bandwidth inefficiency,
bottlenecks and excessive device power consumption.
A potential solution to all those issues is the edge com-
puting [SCZ*16] that envisages the development of a
de-centralized structure where many computing tasks
are moved at the network edge, so closer to the IoT
devices. The exploitation of this novel approach is
described in [WZL'19] where a fog computing-based
technique is proposed for data synchronization in the
ToT.

Following this direction, on the basing of principles
of edge computing, we investigate a cloud architecture
where devices are connected to an IoT gateway, placed
at the network edge, and performing remote files syn-
chronization by interacting with the main data center.
Specifically, we consider a data synchronization mech-
anism given by the combination of Octodiff with a
rephrased version of the adaptive algorithm AC-rdiff
introduced in [PCS™18§], in order to evaluate the ben-
efits of the presented solution on the network traffic
load and on the reduction of the processing time re-
quested by the synchronization procedure.

The paper is organized as follows. In Sec. 2 the net-
work scenario is introduced, reporting the essentials of
Octodiff and AC-rdiff. The architecture and features
of the proposed file synchronization mechanism are de-
tailed in Sec. 3. Sec. 4 reports some numerical results,
and finally the conclusion is drawn in Sec. 5.

2 Reference framework

Let us refer to an IoT scenario where multiple devices
(sensors, vehicles, machinery and so forth) periodically
access the network to store their data and measure-
ments on a cloud server. As previously mentioned, the
potentially large number of entities simultaneously in-
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Figure 1: Reference cloud network architecture.

teracting with the cloud may create a bottleneck at the
server node, so we consider a de-centralized architec-
ture like that one described in Fig. 1 where many IoT
gateways (IoT GWs) placed at the network edge are
responsible for data collection and update. The pro-
posed scenario is realized on the basis of the principles
of edge computing, where data processing is performed
near the devices, reducing latency and providing en-
ergy saving to battery powered IoT entities. There-
fore, each IoT GW is supposed to have a storage ca-
pacity and computing power, so that data synchroniza-
tion can be operated minimizing the interaction with
the cloud central node (communications for network
control and management may be considered anyway).
Giving further details about the communication pro-
tocols involving IoT GWs and the central node goes
behind the scope of this work, however we were in-
spired by a medical IoT application were medical de-
vices communicate with short range links to a GW
that on its turn is interconnected to the Internet. We
focus the attention on remote data synchronization as-
pects. In this direction, we report below the essentials
of Octodiff and the adaptive algorithm in [PCS*18]
that are combined to implement the synchronization
mechanism.

2.1 Octodiff

Octodiff is an implementation of remote delta com-
pression developed by Microsoft. It relies on the rdiff
algorithm that is a particular version of rsync [TM96].
By referring to Fig. 2, Octodiff generates a delta file
containing all the information necessary to update the
old file version stored at server side up to the latest one
provided at the client side. By identifying the IoT GW
as the client and the cloud as the server (Fig. 2), the
main steps of the procedure are summarized as follows
(see [Gitff] for further details):

1. The cloud organizes its old version of the file Foy,p
in blocks of size equal to d., referred as chunks
in the rest of the paper. Then, chunks are com-
pressed, checksums (named signatures in the fol-
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Figure 2: Octodiff scheme for remote file synchroniza-
tion.

lowings) are generated and a resulting list of sig-
natures Sorp are sent to the IoT GW.

2. The IoT GW uses the list of signatures Sorp to
compute the differences between its latest file ver-
sion Fxgw and Forp stored at cloud side. The
output delta file A, containing the information
about the differences, is transmitted to the cloud.

3. The cloud applies the changes reported in A to
Forp, finally obtaining an exact copy of FNEw-

It is worth highlighting that transmitting the signa-
tures Sorp (generated from an Adler32-based rolling
checksum and a hash functions SHA1) instead of the
entire file basis Fop,p brings benefits in terms of band-
width saving. A similar optimization is given by trans-
ferring the smaller file A in place of the whole FNgw.
However, the performance of Octodiff strictly depends
on a convenient choice of d., that is the parameter that
drives not only the split of Forp, but also the differ-
ences computation at the IoT GW side. In fact, if
the dimension of d. is not sufficiently smaller than the
entire file size, the processing at IoT GW side may gen-
erate a file A containing overhead information that is
unnecessary to the cloud for file update. So, additional
and undesired data traffic is generated. In Octodiff the
chunk size is set by default to 2048 bytes, even though
values from 128 to 31744 bytes are accepted. The anal-
ysis of the original rsync reported in [TM96] identifies
the optimal value for the chunk size as equal to 512 or
1024 bytes.

2.2 Adaptive data synchronization algorithm

All the rsync-based algorithms are known to be very
efficient especially when processing rather large size
data (significantly larger than the chunk size). On
the other hand, as previously outlined, providing good
performance becomes harder when small files are han-
dled. In fact, the rsync algorithm works according to a
fixed chunk size, the value of which may be sometimes
inappropriate especially when dealing with heteroge-
neous data. This occurrence is typical in the IoT, so a
static approach to data synchronization is ineffective.
In this direction, the algorithm AC-rdiff introduced
in [PCST18] shows how the chunk size can be conve-
niently tuned in order to match the characteristics of



the file under processing. Specifically, the algorithm
considers the following steps:

1. The differences between two file versions Fngw
and Fopp are computed, generating the output
file A as performed in rsync (and, therefore, as in
Octodiff ) to be transmitted from the client to the
server for completing the update.

2. By analyzing the file A it is possible to infer in-
formation about the portions of Fxgw and Forp
that are matching. So, basing on the distribution
of the matching blocks along the file, a new opti-
mal chunk size is estimated to be used in the next
synchronization procedures.

More in detail, the file A is composed of i) a sequence
of literal bytes, that is all the information recognized as
new and that have to be necessarily sent to the server
for its file version update, ii) a list of tokens, that is
the indexes referring to the position of matching blocks
within the file. The set of tokens represents the input
for the algorithm responsible for the chunk size op-
timization. By analyzing the list of tokens, a rough
estimate of the matching blocks spatial distribution is
obtained. So, loosely speaking, the presence of match-
ing blocks placed one next to the other leads the chunk
size to be incremented. On the other hand, a sparse
distribution of matching blocks makes the chunk size
basically reduced. Finally, the new estimated chunk
size is saved in the header of the file A and transmit-
ted to the cloud in order to be set up for the next
synchronization procedure.

So, the parameters ruling the synchronization
mechanism are tuned basing on the characteristics and
spatial distribution of changes occurring in the file.
Preliminary results have shown the effectiveness of this
approach especially when dealing with data of a size
in the order of few kilobytes (that case may represent
a typical output of an IoT sensor for environmental
monitoring).

3 Adaptive Octodiff synchronization

Interestingly, the chunk size adaptation rule driving
AC-rdiff can be easily combined with any synchro-
nization mechanism relying on the principles of rsync.
In this direction, the study here proposed is on the in-
tegration of AC-rdiff, conveniently modified, with Oc-
todiff tool.

First, it is worth highlighting that AC-rdiff is per-
formed on the current file update procedure, and re-
turns an optimized parameter (the chunk size) to be
applied in the next synchronization event. So, the pro-
cessing performed at the IoT GW side considers two
steps, that is the computation of files differences by
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Figure 3: Proposed scheme for remote file synchro-
nization.

generating the file A and then the chunk size optimiza-
tion. A reference architecture describing this mecha-
nism is essentially given by the cascade of the block
for delta computing (named diff computing) and the
block for chunk size optimization, as depicted in Fig.
3. The processing operated by the cloud, that is file
compression and update, essentially is the same as in
the original Octodiff. Given the storage and process-
ing capacity supposed for the IoT GW we assume that
this node as able to store both Fygw and Fop,p in its
memory. So, the file A can be computed internally,
that is without the need to receive the old file version
reference from the cloud. In this way, the downlink
communication from the cloud to the IoT GW could
be significantly reduced, saving therefore network traf-
fic. The cloud would always deal with the file update
operations, while data compression and transmission
would only concern sporadic cases like for example
failure events where the connection with the IoT GW
needs to be restored. The computing requested by the
ToT GW is instead summarized in the following steps.
The synchronization starts when the IoT GW collects
all the information related to Fxgw and Forp. The
differences between the two files are processed and the
corresponding output file A is generated. The adap-
tive chunking is then performed using the information
(the tokens list) stored in A, returning the new chunk
size estimate dop¢. Finally, both the file A and dops
are sent to the cloud to let it perform its file version
update. It is worth highlighting that the cloud must
receive from the IoT GW the information about dops
so that it can correctly set up the parameters for the
next synchronization procedure.

To implement the AC-rdiff in the Octodiff frame-
work the algorithm has been rephrased in some parts,
with the corresponding pseudocode being detailed be-
low. Specifically, the input is represented by the cur-
rent chunk size and a vector gathering the token in-
dexes, dolg and Py respectively. By computing the dis-
tance between consecutive token indexes (row 10) the
distribution of matching chunks along the file is in-
ferred and multiple partial estimates of the optimal
chunk size are obtained (row 13-18). The new chunk
dopt is returned by the average on the partial esti-



Algorithm 1 AC-rdiff Algorithm
1: Input: P; Token index vector; dyq current chunk
size
2: if size(P;) < 1 then
3: dopt = dold

4: else

5. W, := || Chunk size partial estimates vector
6: count := 0 Chunk estimates counter

7 Nge := 1 Adjacent matching chunks counter
8  Nugq := 0 Expected updates counter

9: for m = 1:M-1

10: D, 1= Pi(m) — Pi(m — 1)

11: if ®,, == d,q then

12: Nge := Nge +1

13: W (count) := doia + prup Nac

14: else

15: count := count + 1;

16: Nye i =1

17: Nyg := [iﬂ —1]

18: Wm(COUHt) = doiq - ,uDOWNNud

19: count := count + 1;

20: Nyqg =0

21: end

22: end

23: Wm(Wm > 2d01d) = 2do1q

24: Wm(Wm < 0.5d01d) := 0.5do1q

sum(W,,)

25: d =
P size(Win)

26: end

27: return dop

mates collected in W,,. The speed of adaptation of
the new chunk size is ruled by two step sizes, namely
pup and ppown. However, in order to avoid exces-
sive variations of the output, dop¢ is allowed to range
from half the old chunk size dy,q and 2 times dgq.
Furthermore, as described in the previous section, the
chunk size driving Octodiff can assume values from 128
to 31744 bytes, so the output of AC-rdiff is anyway
forced to meet this constraint even when the actually
estimated dop¢ is out of the considered range.

4 Numerical results

The effectiveness of remote synchronization algorithms
strictly depends on the characteristics of data under
processing and on the changes that they may be sub-
ject to. It is worth noting that the measurements
produced by devices are typically gathered into files
characterized by an header and a payload or, in more
specific cases, into structured formats like for instance
JSON and XML. The knowledge of how the informa-
tion to be transmitted is organized could be helpful in
order to conveniently set up the synchronization mech-
anism, however the heterogeneity of data and devices

in the IoT may not always allow the achievement of
optimal performance.

In this direction, we have investigated the efficiency
of the proposed adaptive chunking based Octodiff, re-
ferred as A-Octodiff in the rest of the paper, compar-
ing its performance with those provided by the classi-
cal Octodiff working with static parameters, referred
as S-Octodiff. Specifically, by running the remote file
synchronization on simulated data, we show how the
flexibility characterizing A-Octodiff results to be use-
ful for optimizing of the network traffic load, but also
for reducing the processing time.

We preliminary considered the remote file synchro-
nization as run on simulated files, the dimension of
which has been initially chosen to be about 50 kB.
Such a value is in line with the typical output gen-
erated by some IoT devices. Specifically, the perfor-
mance of A-Octodiff and S-Octodiff have been mea-
sured in terms of generated traffic percentage, given
by:

Ty = dlmim x 100

dlm(FNEw)
that is the ratio between the amount of data actu-
ally transmitted (the file A) and the dimension of the
entire latest file version (the file Fxgw). The results
come from the average on 100 simulations (that is, 100
file synchronization procedures), considering different
file update percentages expressing how much of the
current file has changed with respect to its previous
version.

The spatial distribution of updates within the file
have been first modeled as uniform and organized in
blocks of variable size (from tens to hundreds of bytes).
This kind of distribution represents the worst case for
S-Octodiff and, in general, for all the synchronization
mechanisms working with static parameters since the
updates essentially occur randomly in the file. The
synchronization mechanisms have been implemented
with different starting chunk sizes, but while these
values remain static in S-Octodiff, the adaptation pro-
vided by A-Octodiff make them change as the simula-
tions go on. S-Octodiff considers by default the chunk
size as equal to 2048 bytes. By looking at the results
reported in Fig. 4 it is possible to appreciate how the
use of such static value provides bad performance as
the generated traffic percentage is in the order of 35%,
increasing up to the 50% as the file update percentage
grows (error bars referring to a 95% confidence interval
are highlighted for all the measurements). The reason
is that the chunk size is too large with respect to the
file size, therefore it is very hard to recognize matching
blocks of bytes. On the other hand, with A-Octodiff,
by adapting the chunk size to an optimal value, the
amount of generated traffic results to be significantly
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Figure 4: Performance of different remote synchroniza-
tion mechanisms on 50 kB files (randomly distributed
updates).
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Figure 5: Chunk size adaptation during 50 kB files
update (randomly distributed updates).

reduced down to the 15%-25%. The same simulations
have been run considering a starting chunk size equal
to 512 bytes that has resulted to be more suited to
the considered scenario, in fact S-Octodiff returns an
average traffic percentage ranging from 13% to 30%.
However, the adaptive mechanism driving A-Octodiff
allows the achievement of even better performance, as
the generated traffic percentage is reduced by the 6%-
7% with respect to S-Octodiff. Finally, the remote file
synchronization has been performed using the mini-
mum chunk size allowed by Octodiff, that is 128 bytes.
In this case A-Octodiff provides essentially the same
performance of A-Octodiff using a starting chunk size
equal to 512 bytes. This fact can be explained by look-
ing at Fig. 5 describing the adaption of the chunk size
as the simulations proceed (the values on the verti-
cal axis are reported on a logarithmic scale for con-
venience). Specifically, it is possible to observe that
when the initial chunk size is 512 bytes the value tends
to decrease (the same happens for the chunk size ini-
tially equal to 2048 bytes), while if the starting chunk
size is 128 byte, the adaptation mechanism returns in-
creasing values. Therefore, as the chunk sizes tend to
converge, it is reasonable to measure the same perfor-
mance. Furthermore, we observe that, since the opti-
mal chunk size value equal to 150 bytes is quite close to
the minimum one allowed, S-Octodiff and A-Octodiff
return the same average traffic percentage when a 128

R, A-Octodiffiog | A-Octodiffs;o | A-Octodiffogag
S-Octodiff, 25 1.15 0.91 0.98
S-Octodiffs, 5 1.32 1.05 1.12
S-Octodiffo,s 0.67 0.53 0.56

Table 1: Time processing ratio measures (50 kB files,
randomly distributed updates).

bytes initial chunk size is considered.

Finally, it is worth noting that when the differences
between two files are computed returning the list of
matching blocks, the Octodiff tool is able to compress
the corresponding tokens in a single interval if they are
listed in ascending order, reducing the information to
be sent. So, using a small chunk size may seem always
convenient since by doing so, even if the number of
generated tokens is higher than the case when a larger
chunk size is used, they can be however compressed .
So this is the reason why Octodiff and A-Octodiff re-
turn the same generated traffic percentage. However,
in general the time for file processing and difference
grows increases as the chunk size decreases.

The benefits coming from the use of an adaptive
approach with respect to the static one have been also
evaluated by comparing the time required for process-
ing. Of course the performance depend on the specific
hardware employed to run the synchronization proce-
dure, so we have introduced the following metric:

Taa ive
Ry = p,adapt (1)

3
Tp,static

that is the ratio between the average processing time
referring to the adaptive mechanism and the average
processing time for the static one. By doing so, the
performance comparison between adaptive and static
mechanism can be expressed independently from the
hardware used for tests. In this direction, Tab. 1
reports the results of Rr, measured combining the A-
Octodiff and S-Octodiff implementations. Specifically,
having values less than 1 means that the adaptive
mechanism is less time consuming than the static one.
On the other hand, when values exceed 1, A-Octodiff
requests more time than S-Octodiff. However, this lat-
ter results is not always negative. In fact, for example,
even though A-Octodiff,, is slower than S- Octodiffs;,
the use of the adaptive approach provide a significant
traffic saving with respect to the static mechanism
(Fig. 4). Moreover it is also shown that, in general,
the use of a small chunk size leads to the recognition
of a larger number of matching blocks, but it makes
the difference computing processing longer.

In order to highlight the performance of the consid-
ered synchronization mechanisms and the importance
of using a proper chunk size, we have performed other
simulations considering smaller files, with size equal
to 5 kB. By referring to Fig. 6 we observe how using
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a 2048 bytes chunk size results to be unsuitable,
with very low performance provided by S-Octodiff.
Significant improvements are instead obtained when
considering A-Octodiff. Actually, the chunk size equal
to 512 bytes is recognized to be too large as well,
in fact traffic percentage generated by S-Octodiff is
quite high, around the 70%. In fact, the curves in Fig.
7 show how the optimal chunk size is essentially the
minimum one allowed by Octodiff. So, when dealing
with very small size data it is convenient to reduce the
chunk size, as demonstrated by the results referring
to S-Octodiff and A-Octodiff implemented with an
initial chunk size equal to 128 bytes. Moreover, the
advantage given by an adaptive approach can be once
more appreciated by observing that the performance
of A-Octodiff implemented with a 512 bytes initial
chunk size approaches the one provided using a
smaller chunk size. Interestingly, by referring Fig. 7,
the adaptive chunking seems not have effects when
A-Octodiff is implemented according to a 128 bytes
initial chunk size, since no changes are observed. At
first glance, it would be inferred that the optimal
chunk size is exactly 128 bytes. However, taking into
account the constraint about the minimum chunk size
characterizing Octodiff, the optimal chunk size could
be actually less than 128 bytes as well. So, in order
to investigate this issue, we simulated the behavior
of Octodiff in Matlab removing the limit about the

R, A-Octodiffiog | A-Octodiffs;o | A-Octodiffogag
S-Octodiff, 25 1 1 1
S-Octodiffs, 5 0.62 0.65 0.63
S-Octodiffyyss 0.43 0.45 0.44

Table 2: Time processing ratio measures (5 kB files,
randomly distributed updates).
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Figure 8: File updates with exponential probability
density function.

allowed chunk size, and we found out that the optimal
value would be around 70 bytes, as demonstrated
by the dashed curves reported in Fig. 7. Finally,
Tab. 2 reports results referring to the time processing
ratio between adaptive and static mechanisms, and
it is possible to appreciate that the processing time
of A-Octodiff is always less or at most equal to the
processing time characterizing A-Octodiff. So, in this
context, we can conclude that when the dimension of
files is in the order of few kilobytes, the use of Octodiff
tool may not be convenient for data synchronization
since the constraint about the minimum value of the
chunk size could not allow the achievement of best
performance in terms of traffic saving.

The second scenario under investigation has consid-
ered the file synchronization performed on input files
where the updates distribution was modeled according
to the following exponential probability density func-
tion:

fa;\) = daer® 0<zx<1

with A = 0.1 and the random variable x, representing
the index (position) of new bytes in the original file,
normalized to 1 (Fig. 8). By doing so, we refer to the
possibility of having updates occurring at the end of
the file more frequently than at the beginning, because
the more x is close to 1 the more the updates are lo-
cated in the final part of the file. Figs. 9-10 reports the
results referring to the remote synchronization of 50
kB and 5 kB files, respectively. In general, we observe
the better results with respect to Figs. 4-6 since now
the updates are no more randomly distributed, but
concentrated at the end of the file. So it is reasonable
to find a higher number of matching blocks, result-
ing in a lower generated traffic amount. However, the
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Figure 9: Performance of different remote synchro-
nization mechanisms on 50 kB files (exponentially dis-
tributed updates).
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comparison between S-Octodiff and A-Octodiff imple-
mented with different chunk sizes highlights the same
trend, thus showing the effectiveness of the proposed
adaptive approach even in this scenario. For the sake
of completeness, we also report in Figs. 11-12 the per-
formance of A-Octodiff in terms of chunk size adap-
tation for both file size cases. The chunk size con-
verges towards quite the same value reached in Figs.
5-7, approximately around 70 bytes. Tabs. 3-4 report
the results in terms of time processing ratio referring
to the 50 kB and 5 kB files synchronization analysis,
respectively. In that case we observe that the process-
ing time referring to A-Octodiff is in general higher
than the processing time characterizing S-Octodiff.

2048

1024 F — A-Octodiff,
—A-Octodiff;,

—A-Octodiff,, o

Chunk size (bytes)
w1
P
N

N

a

=)
T

-
N}
@

I I I I I I I I I
10 20 30 40 50 60 70 80 90 100
no. Simulations

Figure 11: Chunk size adaptation during 50 kB files
update (exponentially distributed updates).
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Figure 12: Chunk size adaptation during 5 kB files
update (exponentially distributed updates).

Rr, A-Octodiffiog | A-Octodiffs;s | A-Octodiffygag
S-Octodiff,os 1.34 1.28 111
S-Octodiff,, 1.63 1.56 1.35
S-Octodiffyss 0.71 0.68 0.69

Table 3: Time processing ratio measures (50 kB files,
exponentially distributed updates).

R, A-Octodiffig | A-Octodiffs;o | A-Octodiffogag
S-Octodiff, 25 1.1 1 1
S-Octodiffs, 5 0.85 0.78 0.77
S-Octodiffyoss 0.46 0.42 0.41

Table 4: Time processing ratio measures (5 kB files,
exponentially distributed updates).

However better performance are provided in terms of
generated traffic percentage, as shown in Figs. 9-11.

Finally, we considered data synchronization in-
volving file of variable size. Specifically, we run the
synchronization mechanism on 100 files with sizes
ranging from 40 kB to 80 kB. Each file is modified
with respect to its previous version according to an
update percentage randomly varying between 5% and
20%. The updates are represented by bytes addition,
removal and substitution. = The generated traffic
percentage and the processing time ratio, averaged on
100 simulations, are reported in Tab. 5 as a function
of the synchronization mechanism employed, that is
static or adaptive, and of the chunk size. It is worth
highlighting that the values referring to A-Octodiff
are quite uniform, thus meaning that the use of
the adaptive approach makes the performance less
sensitive to the choice of the initial chunk size. On
the other hand, when using a static mechanism, the
set up of fixed, unsuitable chunk size may lead the
generated traffic percentage to be higher, as in the
case of S-Octodiffsg4. The effectiveness of A-Octodiff
can be further appreciated by observing Fig. 13
reporting the chunk size adaptation along the 100
simulations. In fact, despite A-Octodiff is initialized
with different values, the chunk size tends to adapt
toward the same optimal value around 200 bytes.



Av. Traffic Percentage | Rr,
A-Octodiffi g 4.01% 0.68
S-Octodiff, vs 3.52% '
A-Octodiffsy 4.03% 1.06
S-Octodiffs, 5 6.01% '
A-Octodiffyg,s 6.11% 0.62
S-Octodiffygas 15.32% '

Table 5: Average generated traffic percentage and pro-
cessing time ratio when variable size data are consid-
ered.
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Figure 13: Chunk size adaptation when variable size
data are synchronized.

Summarizing, the implementation of the adaptive
chunking in the Octodiff framework has allowed the re-
alization of a remote synchronization mechanism char-
acterized by low sensitivity to the characteristics of the
files under processing. This aspect turns out to be sig-
nificant in the IoT context where heterogeneous data
are typically handled.

5 Conclusions

This paper proposed an analysis of remote data update
solutions to be used in IoT scenario. Specifically, one
of the most known file synchronization tools, namely
Octodiff, has been combined with a recently proposed
algorithm for adaptive chunking. The performance of
the resulting mechanism has been evaluated, highlight-
ing the provided traffic saving with respect to the clas-
sic Octodiff version working with a static approach.
The proposed solution aims at catching the benefits of
an edge computing for IoT that helps to reduce the
network load on the one side and the IoT power con-
sumption on the other side.
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