
Is Your Argument Still Skeptically Accepted?

Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi

Department of Informatics, Modeling, Electronics and System Engineering,
University of Calabria, Italy

{g.alfano,greco,fparisi}@dimes.unical.it

Abstract. Though there has been an extensive body of work on efficiently solv-
ing computational problems for static Dung’s argumentation frameworks (AFs),
little work has been done for handling dynamic AFs and in particular for deciding
the skeptical acceptance of a given argument. In this paper we discuss SPA [6], an
efficient algorithm for computing the skeptical preferred acceptance of an argu-
ment (goal) in dynamic AFs. SPA relies on two main ideas: i) computing a small
portion of the input AF, called “context-based” AF, which is sufficient to deter-
mine the status of the goal in the updated AF, and ii) incrementally computing the
ideal extension to further restrict the context-based AF. We discuss experiments
showing that SPA significantly outperforms the computation from scratch, and
that the overhead of incrementally maintaining the ideal extension pays off.
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1 Introduction

Abstract argumentation has emerged as one of the major fields in Artificial Intelli-
gence [17, 41]. In particular, abstract argumentation frameworks (AFs) [27] are a sim-
ple, yet powerful formalism for modelling disputes between two or more agents. The
formal meaning of an AF is given in terms of argumentation semantics, which intu-
itively tell us the sets of arguments (called extensions) that can collectively be used to
support a point of view in a discussion.

Although the idea underlying AFs is very simple and intuitive, most of the argumen-
tation semantics proposed so far suffer from a high computational complexity [30, 29,
36]. In particular, skeptical reasoning under the well-known preferred semantics—one
of the most popular semantics [22]—is in the second level of the polynomial hierarchy.
Efficient algorithms for AFs have been deeply investigated in the literature, as wit-
nessed by the International Competition on Computational Models of Argumentation
(ICCMA) 1. One of the more challenging tasks of ICCMA is deciding the skeptical
preferred acceptance of a given argument (goal).

However, ICCMA competition as well as most research have focused on ‘static’
frameworks, whereas in practice AFs are dynamic systems [16, 15, 31, 40, 25]. In fact,
an AF often represents a temporary situation, as new arguments and attacks can be
added/retracted to take into account new available knowledge. For instance, for dis-
putes among users of online social networks [35], arguments/attacks are continuously

1http://argumentationcompetition.org
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added/retracted by users to express their point of view in response to the last moves
made by the adversaries.

Recently, the definition of evaluation algorithms taking into account such dynamic
aspects has received an increasing attention, as in these situations incremental computa-
tion techniques could greatly improve performance [37, 14, 3, 19]. In this regard, a new
track focusing on solvers processing dynamic AFs has been recently proposed for the
upcoming edition of ICCMA competition [20].

In this paper, we discuss the recently proposed algorithm SPA [6] which incre-
mentally solves the following computational task: Given an AF A0, a goal argument
g whose skeptical preferred acceptance w.r.t. A0 is known, and an update u, decide
whether g is skeptical preferred accepted w.r.t. the updated AF u(A0), that is, decide if
g belongs to every preferred extension of u(A0). Thus, we focus on how to efficiently
and incrementally solve the ICCMA computational task DS-pr [42].

Contributions We present SPA [6], an incremental algorithm for computing the Skep-
tical Preferred Acceptance of a goal within a dynamic AF, with the following contribu-
tions:

– Given an update and an argument, we identify a set of arguments, called supporting
set, which contains all the arguments whose acceptance status may change after the
update and propagate up to the goal argument.

– Given the supporting set, we define the concept of context-based AF that allows
us to compute the skeptical preferred acceptance of an argument by focusing on
a smaller AF containing the supporting set as well as additional arguments and
attacks representing auxiliary information on the external context.

– SPA enables the computation on context-based AFs by means of (non-incremental)
state-of-the-art AF solvers. Our solution relies on incrementally maintaining the
ideal extension of the given AF. However, to show the relevance of using the ideal
extension, we also consider a simpler version of our algorithm (called SPA-base)
which does not consider the information provided by the ideal extension.

– We report on experiments showing the effectiveness of our approach. We compare
both SPA and SPA-base with the solver that won the ICCMA’17 competition for
the computational task DS-pr. Both SPA and SPA-base significantly beat the
computation from scratch, and SPA performs better than SPA-base on average.

There has been an extensive body of work on managing changes in argumenta-
tion [26]. Besides the above-cited works, other significant efforts coping with dynam-
ics aspects of AFs include [13, 21, 23, 11, 18, 2, 4, 9, 8, 5]. Similarly to SPA, some ap-
proaches focused on local computation in dynamic AFs [37, 14, 32, 34, 33, 3] but with
the aim of recomputing extensions. However, SPA is the first approach addressing the
problem of efficiently and incrementally computing skeptical acceptance for dynamic
AFs.
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Fig. 1: (a) AF AF0, (b) CBAF(+(h,d),AF0, Eid ,c)

2 Preliminaries

We assume the existence of a set Arg of arguments. An (abstract) argumentation frame-
work [27] (AF) is a pair 〈A,Σ〉, where A⊆ Arg is a set of arguments, and Σ ⊆ A×A is
a binary relation over A whose elements are called attacks.

Given an AF 〈A,Σ〉 and arguments a,b ∈ A, we say that a attacks b iff (a,b) ∈ Σ ,
and that a set S ⊆ A attacks b iff there is a ∈ S attacking b. We use S+ = {b | ∃a ∈ S :
(a,b) ∈ Σ} to denote the set of arguments attacked by S. Moreover, we say that S ⊆ A
defends a iff ∀b∈ A such that b attacks a, there is c∈ S such that c attacks b. A set S⊆ A
of arguments is said to be: (i) conflict-free if there are no a,b ∈ S such that a attacks b;
(ii) admissible if it is conflict-free and it defends all its arguments.

An argumentation semantics specifies the criteria for identifying a set of arguments
that can be considered “reasonable” together, called extension. A preferred extension of
an AF A is a maximal (w.r.t. ⊆) admissible set of A . The ideal extension of A is the
biggest (w.r.t.⊆) admissible set of A which is contained in every preferred extension of
A . It is well-known that every AF admits exactly one ideal extension which is contained
in the intersection of the preferred extensions, which are at least one [28].

Given an AF A = 〈A,Σ〉 and an argument g ∈ A, we say that g is skeptically ac-
cepted w.r.t. A under the preferred semantics iff for each preferred extension E of A
it holds that g ∈ E. In the following, we use SAA (g) to denote the skeptical acceptance
(either true or false) of g w.r.t. AF A .

Example 1. Figure 1(a) shows the graph of the AF AF0 = 〈A0,Σ0〉where A0 = {a,b,c, . . . ,
l} and Σ0 includes, among others, attacks (a,b), (b,a), and (c,d). The preferred ex-
tensions of AF0 are Epr = {a,d,f,h,j,l} and E′pr = {b, d,f, h,k}, while the ideal
extension of AF0 is Eid = {d,f,h}. Thus, SAAF0(d) is true, and so is for SAAF0(f) and
SAAF0(h), while for any other argument x, SAAF0(x) =false. �

Fact 1 Let A be an AF, E the ideal extension of A , and g an argument of A . If g ∈ E
then SAA (g) =true. On the other hand, if g ∈ E+ then SAA (g) =false.

Updates Performing an update on an AF A0 means modifying it into an AF A by
adding or removing arguments or attacks. We use +(a,b), with a,b∈A0 and (a,b) 6∈Σ0,
(resp.−(a,b), with (a,b)∈Σ0) to denote the addition (resp. deletion) of an attack (a,b),



4 G. Alfano et al.

and u(A0) to denote the application of update u = ±(a,b) to AF A0 (where ± means
either + or−). Applying an update u to an AF A0 implies that the extensions prescribed
by a given semantics, as well as the arguments that are skeptical accepted, may change.

Example 2. Continuing with our running example, let u =+(h,d). The ideal extension
of u(AF0) is {f,h}, while the preferred extensions are {a,f,h,j,l} and {b,f,h,k}.
Thus, only f and h are skeptically accepted w.r.t. u(AF0). �

As for the addition (resp. deletion) of a set of isolated arguments (i.e., arguments not
adjacent to any other argument in the graph), it is easy to see that if A is obtained from
A0 through the addition (resp. deletion) of a set S of isolated arguments, then every
argument in S is trivially skeptically accepted (resp., not accepted) w.r.t. A . Indeed,
if E0 is an extension for A0, then E = E0 ∪ S (resp. E = E0 \ S) is an extension for
A containing every (resp., none) argument in S. Of course, if arguments in S are not
isolated, for addition we can first add isolated arguments and then add attacks involving
these arguments, while for deletion we can first delete all attacks involving arguments
in S. Thus we do not consider these kinds of updates in the following, and focus on the
addition and deletions of attacks.

Notation for reachability and other useful concepts Given an AF A = 〈A,Σ〉 and an
argument x, we use Reach

A
(x) to denote the set of arguments that are reachable from x

in the AF A . Moreover, we use Reach−1
A (x) to denote the set of arguments from which

x is reachable in A . For instance, for the AF AF0 = 〈A0,Σ0〉 of our running example
(see Figure 1(a)), we have that ReachAF0(d)= {d,c,g,h,i}, and Reach−1

AF0
(h) = A0 \

{i,j,k,l}. We write Reach
A
(x) = /0 and Reach−1

A (x) = /0 if x is not in A .
We use H(A ,u) to denote the larger AF between A and u(A ), that is, H(A ,u)

is (i) the updated AF u(A ) if u is an addition update (it includes the attack added
through u), (ii) the original AF A if u is a deletion (the removed attack is still considered
in H(A ,u)). For instance, if u = +(h,d) then H(AF0,u) = 〈A0,Σ0 ∪ {(h,d)}〉, while
H(AF0,u) = AF0 for any deletion update u.

We use Π(S,A ) to denote the restriction of AF A = 〈A,Σ〉 to a subset S ⊆ A of
its arguments [13], that is Π(S,A ) = 〈S, Σ ∩ (S×S)〉. For instance, if S = {c,d} then
Π(S,AF0) = 〈{c,d},{(c,d),(d,c)}〉.

Finally, given A1 = 〈A1,Σ1〉 and A2 = 〈A2,Σ2〉, we denote as A1 tA2 = 〈A1 ∪
A2,Σ1∪Σ2〉 the union of the two AFs.

3 Supporting Set

In this section, we introduce the concept of supporting set which intuitively consists
of the set of arguments that needs to be taken into account in order to determine the
skeptical acceptance of an argument of interest after performing an update. We provide
a parametric definition of supporting set that will enable the characterization of different
portions of a given AF, called context-based AFs, that will be used for two different
purposes: (i) recompute the skeptical acceptance of a goal w.r.t. the updated AF, and (ii)
recompute the ideal extension of the updated AF.
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Before defining the supporting set, we introduce the auxiliary notion of steadiness
of an argument. Given an AF A = 〈A,Σ〉, the ideal extension E of A , and an update
u = ±(a,b), we first define E(u) as the subset of E consisting of the arguments which
are not reachable from b in A , i.e., E(u) = {z | z ∈ E,z 6∈ Reach

A
(b)}. Intuitively, the

acceptance status of the arguments in E(u) is not affected by u as they are not reach-
able from it. Then, the set of steady arguments for u = ±(a,b) w.r.t. A is defined as
StdA (u)= (E(u))+\{b}, i.e., the arguments attacked by E(u) in A and that will be still
attacked by E(u) in u(A ). Argument b is not included in StdA (u) as it may be no longer
attacked by a ∈ E(u) after performing u = −(a,b); however, it will be considered for
positive updates in Definition 1. For the AF AF0 of our example, where Eid = {d,f,h},
if u =+(h,d) then Eid(u) = {f} and StdAF0(u) = {e,g} ⊆ E+

id = {c,e,g,i}.

Definition 1 (Supporting set). Let A = 〈A,Σ〉 be an AF, u =±(a,b) an update, E the
ideal extension of A , and g an argument in A. Let

– Sup0(u,A ,E,g) =


/0 if u =+(a,b)∧b ∈ (E(u))+;
/0 if b 6∈ Reach−1

H(A ,u)(g);

{b} otherwise.

– Supi+1(u,A ,E,g)=Supi(u,A ,E,g)∪{y | ∃(x,y)∈ Σ s.t. x∈ Supi(u,A ,E,g) ∧
y ∈ Reach−1

H(A ,u)(g)∧ y 6∈ StdA (u)}.

Let n be the natural number such that Supn(u,A ,E,g) = Supn+1(u,A ,E,g). The sup-
porting set Sup(u,A ,E,g) is:

Sup(u,A ,E,g) = Supn(u,A ,E,g)∩Reach−1
G (g) (1)

where G=Π(Supn(u,A ,E,g),H(A ,u)) is the restriction of H(A ,u) to Supn(u,A ,E,g).
Finally, when g is not specified, the supporting set, denoted as Sup(u,A ,E,?), is

defined as Sup(u,A ,E, g) except that all the checks concerning Reach−1 are omitted.

Intuitively, Sup(u,A ,E,g) consists of the arguments whose status may change after
performing an update u and such that their change can imply a change of the status of g.
More in detail, Sup(u,A ,E,g) for u =±(a,b) and g consists of the arguments that (i)
can be reached from b without using any steady argument y; and (ii) allow to reach g in
H(A ,u) by using only the arguments in Supn(u,A ,E,g). In fact, Equation (1) entails
that an argument of Supn(u,A ,E,g) will be in Sup(u,A ,E,g) only if it can reach g in
the restriction of H(A ,u) to Supn(u,A ,E,g)—the other arguments in Supn(u,A ,E,g)
are not needed to determine the acceptance status of g, and thus they are pruned by
Equation (1).

When no argument g is specified, the set Sup(u,A ,E,?) is built by ignoring condi-
tion (ii) above. It is easy to see that, for any argument g, Sup(u,A ,E,g)⊆ Sup(u,A ,E,
?)⊆ Reach

A
(b), where b is the argument in the update u=±(a,b). Moreover, Sup(u,A ,

E,g) may be empty even if g ∈ Reach
A
(b). Finally, if Sup(u,A ,E,g) 6= /0 then the ar-

guments of at least one path from b to g belong to Sup(u,A ,E,g).

Example 3. For the goal c, we have that Sup0(u,AF0, Eid , c)= {d}, Sup1(u,AF0,Eid ,c)=
{c,d}, and Sup2(u,AF0,Eid ,c)= {c,d} (the latter does not contain g since g∈ StdAF0(u)).
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Thus, Sup(u,AF0,Eid ,c) = {c,d} as both c and d allow to reach c in the restriction of
the updated AF to {c,d}. Analogously, we have that Sup(u,AF0,Eid ,?) = {c,d}.

Consider now the goal h. Again Sup0(u,AF0,Eid ,h)= {d}, and Sup1(u,AF0,Eid ,h)=
Sup2(u,AF0,Eid ,h)= {c,d}. However, Sup(u,AF0,Eid ,h)= /0 as {c,d}∩Reach−1

G (h)=
/0, where G = Π({c,d},u(AF0)). Finally, for the goal a, Sup(u,AF0,Eid ,a) = /0. �

Theorem 1. Let A0 = 〈A0,Σ0〉 be an AF, E0 the ideal extension of A0, u =±(a,b) an
update, A = u(A0) the updated AF, and x an argument in A0. Therefore, if Sup(u,A0,
E0,x) = /0 then SAA (x) = SAA0(x).

Example 4. Since Sup(u,AF0,Eid ,h)= /0 we can conclude that SAu(AF0)(h)= SAAF0(h)=
true. Similarly, since Sup(u,AF0,Eid ,a) = /0 then SAu(AF0) (a) = SAAF0(a) =false. �

4 Context-Based Argumentation Frameworks

The supporting set has been used so far to determine whether the status of the goal does
not need to be recomputed. In this section, starting from the supporting set, we define a
restriction of the AF which will be used to compute the status of the goal after an update.
Specifically, given the set Sup(u,A ,E,g) (resp. Sup(u,A ,E,?)), we define the context-
based AF CBAF(u,A ,E,g) (resp. CBAF(u,A ,E,?)). While CBAF(u,A ,E,?) will
be used to incrementally compute the ideal extension of the updated AF (with the aim
of checking if one of the conditions of Fact 1 holds), CBAF(u,A ,E,g) will be used to
compute the skeptical acceptance SAu(A )(g) w.r.t. the updated AF.

Given an AF A = 〈A,Σ〉, its ideal extension E, and a set S⊆A, we use Nodes(A ,S,
E) to denote the set of the nodes x ∈ A such that there are a node y ∈ S and a path from
x to y in A such that all nodes in the path except y do not belong to E ∪E+ (i.e., they
are undecided [12]). Analogously, Edges(A ,S,E) is the set of edges (x,z) ∈ Σ such
that there are y ∈ S and a path from x to y in A containing (x,z) such that all nodes
in the path except y do not belong to E ∪E+. Essentially, if S is the supporting set, to
determine the status of nodes in S we must also consider all nodes and attacks occurring
in paths (of any length) ending in S whose nodes outside S are undecided.

Definition 2 (Context-Based AF). Let A = 〈A,Σ〉 be an AF, u =±(a,b), E the ideal
extension of A , and x either an argument in A or the symbol ?. Let S = Sup(u,A ,E,x).
The context-based AF of A w.r.t. u and x is CBAF(u,A ,E,x) = Π(Sup(u,A ,E,x),
u(A ))tT1tT2 where:

– T1 is the union of the AFs 〈{c,d},{(c,d)}〉 s.t. (c,d) is an attack of u(A ) and
c 6∈ Sup(u,A ,E,x), c ∈ E, and d ∈ Sup(u,A ,E,x);

– T2 = 〈Nodes(u(A ),S,E), Edges(u(A ),S,E)〉.

Example 5. For AF0, where Eid = {d,f,h}, and u=+(h,d), we have seen in Example 3
that Sup(u,AF0,Eid ,c)= {c,d}. Thus CBAF(u,AF0,Eid ,c)= 〈{c,d},{(c,d),(d,c)}〉t
T1tT2 where: T1 = 〈{h,d},{(h,d)}〉 since h∈Eid does not belong to Sup(u,AF0,Eid ,c)
while d ∈ Sup(u,AF0,Eid ,c); and T2 = 〈{a,b,c},{(a,b), (b,a),(a,c),(b,c)}〉 since
there are paths starting from the undecided arguments a and b ({a,b} 6⊆ (Eid ∪E+

id ))
and ending in c ∈ Sup(u,AF0,Eid ,c). Thus, CBAF(u,AF0,Eid ,c) is the AF shown in
Figure 1(b). Also, CBAF(u,AF0,Eid ,?) = CBAF(u,AF0,Eid ,c). �
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Algorithm 1 SPA(A0,g,SAA0(g),u,E0)
Input: AF A0 = 〈A0,Σ0〉,

argument g ∈ A0,
skeptical acceptance SAA0(g) of g w.r.t. A0,
update u =±(a,b),
ideal extension E0 of A0.

Output: skeptical acceptance SAu(A0)(g) of g w.r.t. u(A0),
ideal extension E of u(A0).

1: Let S? = Sup(u,A0,E0,?)
2: Let Aid = CBAF(u,A0,E0,?)
3: Let E = (E0 \S?)∪ ID-Solver(Aid)
4: if g ∈ E then
5: return 〈true, E〉
6: if g ∈ E+ then
7: return 〈false, E〉
8: Let Sg = Sup(u,A0,E0,g)
9: if Sg is empty then

10: return 〈SAA0(g),E〉
11: Let Asa = CBAF(u,A0,E0,g)
12: return 〈SA-Solver(Asa,g), E〉

Theorem 2. Let A0 = 〈A0,Σ0〉 be an AF, E0 the ideal extension of A0, u =±(a,b) an
update, A = u(A0) the updated AF, and x an argument in A0. Thus, if Sup(u,A0,E0,x) 6=
/0 then x is skeptically accepted w.r.t. A iff it is skeptically accepted w.r.t. the context-
based AF CBAF(u,A0,E0,x).

Example 6. Continuing from Example 5, we can conclude that argument c is not skep-
tically accepted w.r.t. the updated AF u(AF0) because it is not skeptically accepted w.r.t.
the context-based AF CBAF(u,AF0,Eid ,c) of Figure 1(b) whose preferred extensions
are {a,h} and {b,h} (only h is sceptically accepted w.r.t. the context-based AF). �

Theorem 3. Let A0 = 〈A0,Σ0〉 be an AF, E0 the ideal extension of A0, u =±(a,b) an
update, and A = u(A0) the updated AF. Then, the ideal extension E of A is such that
E = (E0 \ Sup(u,A0,E0,?))∪E ′, where E ′ is the ideal extension of the context-based
AF CBAF(u,A0,E0,?).

Example 7. Continuing from Example 5, the ideal extension {f,h} of u(AF0) is equal
to ({d,f,h}\{c,d})∪{h} where {h} is the ideal extension of CBAF(u,AF0,Eid ,?). �

5 Incremental Computation

The results of Theorems 1 and 2, along with those of Theorem 3 and Fact 1, allow us
to define SPA (see Algorithm 1) to decide the skeptical acceptance of a goal g w.r.t. an
AF A0 updated by u =±(a,b). Algorithm SPA works as follows. First, the supporting
set S? = Sup(u,A0,E0,?) is computed at Line 1, and using Theorem 3 the ideal exten-
sion E of the updated AF is computed by invoking an external solver ID-Solver(Aid),
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Fig. 2: Improvement of SPA and SPA-base over ArgSemSAT on A2 (LHS) and A3 (RHS)

computing the ideal extension of the context-based AF CBAF(u,A0,E0,?) (Line 3).
Then, using Fact 1, if g belongs to E, then g is skeptically accepted and the algorithm
returns true along with the ideal extension of the updated AF (Line 5). Similarly, if
g belongs to the set of arguments attacked by an argument in E, then g is not skep-
tically accepted and the algorithm returns false along with E (Line 7). Otherwise, the
set Sg = Sup(u,A0,E0,g) is built (it can be efficiently done by starting from S?), and
it is checked if it is empty. If this is the case, using Theorem 1, we can conclude that
the acceptance status of g does not change after the update (Line 10). Otherwise, the
context-based AF is built at Line 11 and, using Theorem 2, the skeptical acceptance of
g is recomputed by invoking an external solver SA-Solver(Asa,g) which tells us if g is
skeptically accepted w.r.t. the context-based AF CBAF(u,A0,E0,g) (Line 12).

SPA-base: A version of SPA not using the ideal extension SPA-base is obtained
from SPA by skipping lines 1–7 of Algorithm 1 and assuming E0 = /0 at lines 8 and 11
to compute Sg and Asa respectively. Also, no ideal extension is returned (i.e., E = ⊥).
Notice that, similarly to SPA-base, SPA does not use the information provided by the
initial ideal extension when E0 = /0, though SPA always incrementally computes the
ideal extension of the updated AF.

6 Experimental Results

We have implemented a C++ prototype and compared our incremental technique with
ArgSemSAT [24], the solver that won the last ICCMA competition for the task DS-pr
of determining the skeptical preferred acceptance.

As for the datasets, we used benchmarks from the DS-pr track of ICCMA’17, that
is, the dataset A2 consisting of 50 AFs with a number of arguments |A| ∈ [61, 20K] and
a number of attacks |Σ | ∈ [97, 358K], and the dataset A3 consisting of 100 AFs with
|A| ∈ [39, 100K] and |Σ | ∈ [72, 1.26M]. For each AF A0 in the dataset, we randomly
selected an update u and an argument g. Then, we computed SAu(A0)(g) by using 1)
SPA, that is Algorithm 1 where ID-Solver is pyglaf [10] and SA-Solver is ArgSemSAT;
2) SPA-base where only ArgSemSAT is used; and 3) ArgSemSAT (from scratch).
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For AF A0, update u, and argument g, let tA and tB be the amount of time required
by SPA and SPA-base, respectively, to compute SAu(A0)(g). Let tS be the time required
by ArgSemSAT to compute SAu(A0)(g) from scratch. Then, the improvements of SPA
and SPA-base over ArgSemSAT are defined as tS

tA
and tS

tB
, respectively. Thus, an im-

provement equal to x means that the incremental computation is x times faster than the
computation from scratch.

Figure 2 reports the improvement (log scale) of SPA and SPA-base over ArgSem-
SAT on datasets A2 (left-hand side) and A3 (right-hand side) for single updates ver-
sus the size of the AFs, i.e., the number of attacks (solid lines are obtained by linear
regression). Both SPA and SPA-base significantly outperform the computation from
scratch, though the improvement decreases as the number of attacks increases—this be-
havior is in line with that of algorithms for computing argumentation semantics in the
static setting [38, 39, 7, 1] and it is further analyzed in [6] where additional experiments
considering sets of updates performed simultaneously are presented.

Considering the averages of the improvements, SPA and SPA-base turn out to be
5 and 4 orders of magnitude faster than ArgSemSAT, respectively. However, as this can
be skewed by extremely large values of improvements (e.g. 106), we also considered
the medians of improvements for SPA (32 on A2, 134 on A3) and SPA-base (27 on
A2, 40 on A3) (see dashed line in Figure 2), which confirm the significance of the gain
in efficiency. In brief, both SPA and SPA-base generally outperform the computation
from scratch, and SPA is generally faster than SPA-base except for a few AFs whose
initial ideal extension is empty—future work will focus on devising heuristics to take
advantages of both algorithms.
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