
Engineering Multiagent Organizations
by Accountability and Responsibility

Matteo Baldoni1 [0000-0002-9294-0408] (B), Cristina Baroglio1, [0000-0002-2070-0616],
Olivier Boissier2, [0000-0002-2956-0533], Roberto Micalizio1, [0000-0001-9336-0651], and

Stefano Tedeschi1 [0000-0002-9861-390X]

1 Università degli Studi di Torino - Dipartimento di Informatica, Torino, Italy
firstname.lastname@unito.it

2 Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol, MINES
Saint-Etienne, Saint-Etienne, France

Olivier.Boissier@emse.fr

Abstract. Basing upon multi-agent systems, we show that an explicit
representation of accountabilities and responsibility assumptions gives
the right abstractions for properly specifying who should provide feed-
back to whom, about the execution of its duties, both at the level of
design and at the level of programming. For the latter, we explain a pro-
gramming pattern for developing accountable agents, and illustrate the
approach in JaCaMo. The paper takes into account business processes as
a motivating scenario.

Keywords: Accountability · Responsibility · BPMN · JaCaMo.

1 Introduction

Multiagent Systems (MAS), and in particular MAS organizations (MAO), are
an approach to the design and development of complex, distributed software.
In this respect, they are promising candidates to supply the right abstractions
for developing business processes. In fact, a business process (BP) is “a set of
activities that are performed in coordination in an organizational and technical
environment. These activities jointly realize a business goal.” [32]. In general, a
business goal is achieved by breaking it up into sub-goals, which are distributed
to a number of actors. Each actor carries out part of the process and depends
on the collaboration of others to perform its task.

In order to provide the right support to BPs, however, MAOs are still lacking
a systematic way to properly handle feedback of the execution, provided in terms
of good or bad functioning. Feedback will generally be of interest to (and should
be handled by) an agent which is not the one that produces it. Therefore, an
appropriate “infrastructure” needs to be devised. In [2] a proposal was made to
introduce accountabilities and responsibility relationships inside a MAO. Build-
ing upon that work, here we explain how such concepts can be used as tools to
systematize and guide the design and development of the agents. We also present
a programming pattern, providing an exemplification in JaCaMo MAOs [8], as a

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Engineering Multiagent Organizations by Accountability and Responsibility 13

VIP Customer

K
ey

 A
cc

ou
n
t

M
an

ag
er

Customer
Has Problem

Explain
Solution

Ask
Description

Answer Received

Can Handle?

Ask 1st Level
Support

1
st

 L
ev

el
 S

u
p
p
or

t

Ask 2nd
Level

Support

Handle 1st
Level Issue

Provide
Feedback for

Account
Manager

Answer Received

Result?

Issue

2
n
d
 L

ev
el

 S
u
p
p
or

t

Result?
Provide

Feedback for
1st Level
Support

Handle 2nd
Level Issue

Answer Received

Insert Into
Product
Backlog

Ticket Received

Unsure?

Ask
Developer

S
of

tw
ar

e
D

ev
el

op
er

Examine
Problem

Request
From Support

Provide
Feedback for

2nd Level
Support

No

Yes

2nd Level Issue

No Solved

Solved

Yes Next
Release

Fig. 1. The incident management BPMN diagram.

practical way to implement the feedback loop. This paper discusses some results
that have been published in [3] at AAMAS 2019, as extended abstract3.

The paper is organized as follows. Section 2 broadly introduces the concepts
of accountability and responsibility as tools for engineering agents in MAOs to
effectively realize BPs. To illustrate, we rely on the OMG Incident Management
process, as a practical use case. Section 3 presents the actual programming pat-

3 The same results have been presented in more detail, as a full paper, at the 7th Inter-
national Workshop on Engineering Multi-Agent Systems (EMAS 2019), co-located
with AAMAS 2019. The paper also won the Best Paper Award.

14 M. Baldoni et al.

tern to develop accountable agents. In Section 4 we show how the pattern can
be applied, in the scope of the JaCaMo framework, to the Incident Management
scenario. Conclusions end the paper.

2 Responsibility and Accountability as Engineering
Concepts

Figure 1 shows OMG’s Incident Management BP [25] that we use as running
example to exemplify interaction issues rising when feedback produced by an
actor should be reported to the most appropriate one. The process models the
interaction between a customer and a company for the management of a problem
reported by the customer to a Key Account Manager, who, on the basis of her
experience, can either solve the problem directly, or ask for the intervention of
first-level support. The problem is, then, recursively treated at different support
levels until, in the worst case, it is reported to the software developer. Thus,
the business aim of the process (to solve the reported problem) will generally
be decomposed and may be distributed over up to five BPMN processes, whose
execution requires interaction and coordination. Noticeably, as usual with BPs,
the way in which goals are achieved matters: agents are expected not only to
fulfill their assigned goals, but also to respect the BP – the “goal” is that the
process takes place [1].

One common limitation of the kind of modularity implemented both by BPs
and by MAOs is that the overall process structure of the goal is intended mainly
as a way for constraining the agents’ autonomy, and not as information provided
to support the agents in their work: agents are expected merely to focus on the
achievement of the assigned sub-goals. In this way, however, the agents loose
sight of the overall process and ignore the place their achievement has within
the organization. The relationship between each level of support and the follow-
ing one, in the example, is emblematic: when a request of support is made, an
answer containing some kind of feedback on the realization of this support is ex-
pected in order to proceed. However, since processes are independent, one cannot
give for granted that another will answer. It follows that when a process does
not answer, the waiting one may get stuck indefinitely. Similarly, MAOs (e.g.,
[11, 14]) allow a designer to structure the functional decomposition of complex,
organizational goals, and the assignment of subgoals to agents. The coordinated
execution of subgoals is often supported by a normative specification, by which
the organization issues obligations towards the agents, e.g., [13, 17, 12, 8]. How-
ever, agents may operate in ways that do not fit into the process specification
and, importantly, when agents fail, the organization has no a systematic mech-
anism for sorting out the abnormal conditions, i.e., for a redress.

This is where accountability [18, 19, 10, 4, 5, 7, 6] and responsibility [29, 31,
33, 6] come in handy. Accountability “emerges as a primary characteristic of
governance where there is a sense of agreement and certainty about the legit-
imacy of expectations between the community members.” [15]. In particular,
accountability implies that some actors have the right to hold other actors to

Engineering Multiagent Organizations by Accountability and Responsibility 15

a set of standards, to judge whether they have fulfilled their responsibilities in
light of these standards, and to impose sanctions if they determine that these
responsibilities have not been met [19]. It presupposes a relationship between
power-wielders and those holding them accountable, where there is a general
recognition of the legitimacy of (1) the operative standards for accountability
and (2) the authority of the parties to the relationship (one to exercise particular
powers and the other to hold them to account).

Concerning responsibility, [31] proposes an ontology relating six different re-
sponsibility concepts (capacity, causal, role, outcome, virtue, and liability), that
capture: doing the right thing, having duties, an outcome being ascribable to
someone, a condition that produced something, the capacity to understand and
decide what to do, something being legally attributable. In the context of In-
formation Systems, the meta-model ReMMO [16] represents responsibility as a
unique charge assigned to an agent. This perspective emerges also in the litera-
ture cited above, where most of the authors acknowledge that responsibility aims
at conferring one or more obligation(s) to an actor (the responsibility owner). In
this light, accountability is grounded on perceived/assumed responsibility, de-
riving from recognition of the claim-right to hold the responsible for a task to
account for that very same task.

BPs represent an agreed behavior, introduce expectations on the behavior
of the interacting parties, and require some kind of governance in order for the
process to be enacted, but the accountability results hidden into some kind of col-
lective responsibility (“many hands problem” [23]). As a consequence, the system
is fragile to unexpected situations. When, instead, accountability relationships
are expressed explicitly, they enable the reporting of unwanted conditions (i.e.,
account, feedback) to the most apt agent to handle them.

3 Engineering MAOs with Accountability/Responsibility

We refer to a setting where the organizational goal is functionally decomposed
and the resulting sub-goals are assigned to agents. Since MAOs often rely on
norms in order to orchestrate the executions of their agents, we imagine obli-
gations, that are issued by the organization, to be the means through which
the coordinated execution of the agents is regulated. Agents, of course, are au-
tonomous and their fulfillment of the obligations cannot be given for granted.

Following [2], we denote by R(x, q) and A(x, y, r, u) responsibility and ac-
countability relationships. R(x, q) expresses an expectation on any agent playing
role x on pursuing condition q (x is entitled and should have the capabilities of
bringing about q); A(x, y, r, u) expresses that x, the account-giver (a-giver), is
accountable towards y, the account-taker (a-taker), for the condition u when the
condition r (context) holds4. We see u in the context of r as the agreed standard
which brings about expectations inside the organization. The proposal in [2]

4 We rely upon precedence logic [28], an event-based linear temporal logic, which deals
with occurrences of events along runs. Event occurrences are assumed to be non-
repeating and persistent. The logic has three primary operators: ‘∨’ (choice), ‘∧’

16 M. Baldoni et al.

suggests to complement the functional decomposition of the organizational goal
with a set of accountability and responsibility specifications. A set of account-
ability relationships is denoted as A, and is called an accountability specification.
The organization designer will generally specify a set of alternative legitimate
accountability specifications which is denoted by A. Given a set of accountability
specifications A, and a set of responsibility assumptions R (responsibility dis-
tribution), the organization is properly specified when the accountability fitting
“R fits A” (denoted by R A) holds [2].

We now discuss one possible use of these concepts at design time for realizing
accountable agents, that is, agents that provide an account of their conduct both
when they succeed in achieving their goals, and when, for some reason, they fail
in the attempt. Since accountabilities and responsibilities imply some obligations
[19], we can realize them in JaCaMo by relying on the deontic primitives that such
framework provides: the fitting relationship represented by each pair 〈R(x, q),
A(x, y, r, u)〉 in Rx Ax (fitting projection), can be mapped into a number of
Jason plans of the agent playing role x by way of the following pattern, expressed
in AgentSpeak(ER) [27]:

+!be accountable(x, y, q) <: drop fitting(x, y, q) {
// Well-Doing e-plan

+obligation(x, q) : r ∧ c <- bodyq.
// Wrong-Doing e-plan

+oblUnfulfilled(x, q) : r ∧ c′ <- bodyf .
}

It is requested that the following conditions hold: 1) bodyq satisfies the fitting-
adherence condition (below); 2) bodyf includes sending an explanation for the
failure from x to y. The two e-plans encode the proactive behavior of an agent as-
suming a responsibility. Until the responsibility is not dropped, the agent starts
reacting to obligations in accordance to the accountability specified in the fit-
ting. The agent will perceive, through the identity that is provided by the orga-
nizational role it plays, certain events as events it should tackle through some
behavior of its own, but it will also be aware of its social position both (1) by
knowing some other agent will have the right, under certain conditions, to ask for
an account and (2) by including specific behavior for building such an account.

Well-doing e-plan – It is triggered when the specified obligation is issued by
the MAO. The context r ∧ c is satisfied when condition r (activating the agent
accountability) holds together with some (possibly empty) local condition c that
allows choosing among alternative plans, i.e., multiple ways to achieve a same
result in different (local) circumstances. bodyq must be such to satisfy a fitting-
adherence condition, that is, given the responsibility assumption represented by
the pair 〈R(x, q), A(x, y, r, u)〉, there must exist an execution of bodyq that, re-
stricted to the events that are relevant for the progression of u, is an actualization

(concurrence), and ‘·’ (before). The before operator allows constraining the order in
which two events must occur.

Engineering Multiagent Organizations by Accountability and Responsibility 17

of the responsibility q (see [2]). Intuitively, q is actually used for fulfilling the
obligation. In this case, in certain applications the obligation to give an account
for the satisfaction of the obligation may be implicitly resolved by satisfying the
very same obligation. It is interesting to note that the accountability fitting is
not only a functional specification of the organization, but it also specifies the
“good” behavior of the agents. It is in fact this characteristic that justifies our
programming pattern, that enriches the standard JaCaMo.

Wrong-doing e-plan – It allows the agent to provide an account when it did not
complete its task. The triggering event, oblUnfulfilled, is generated by the MAO
when an obligation is left unsatisfied. The context has the same structure as
above; bodyf produces an account of the failure. This will be an explanation that
the agent produces and that some other agent will use to manage the exception
and to resume the execution. The correct use of the pattern guarantees, by
design, that exceptional events, when occurring, are reported to the agents who
can handle them properly. Accountability fulfills this purpose because, by nature,
it brings about an obligation on the a-giver to give an account of what it does.

4 JaCaMo Accountable Agents

The engineering of accountable JaCaMo MAOs involves several steps: (1) Each
process is mapped to an organizational role; (2) A scheme representing the over-
all process goal is defined – its successful execution amounts to the achievement
of such a goal; (3) For each activity to be performed in sequence, a subgoal is
added to the scheme by means of the corresponding operator; (4) For each struc-
tured block including a concurrent execution, the corresponding goals, grouped
by the parallel operator, are added to the scheme; (5) For each choice all the
schemes representing the possible courses of action should be defined. They will
be instantiated dynamically by the agents, depending on their internal choices.

By applying the steps to Incident Management we obtain the five roles: cus-
tomer (c), key account manager (am), first level support (fls), second level sup-
port (sls), and developer (dev). For each incident to manage, we assume there
will be exactly one agent playing each role. The organizational goal is distributed
into a set of schemes. The top-level scheme involves c and am, and is instantiated
by the customer c when some need arises. In other terms, the scheme instantia-
tion corresponds to the occurrence of a report-problemc event. When a problem
is reported, the account manager is expected to perform ask-descriptionam (ask
for a description of the problem), and c is expected to send what requested
(send-descriptionc). Then, am should provide a solution: to this aim, it can take
two alternatives courses of action, both leading to the same join point of the
BPMN diagram. The first alternative amounts to the case in which am can han-
dle the problem directly, and does not require the execution of any action before
the join point. The second alternative, instead, amounts to the case in which am
cannot handle the problem directly and brings to the instantiantion of a new
scheme. The agent will make a request (ask-support-flsam) that fls will manage

18 M. Baldoni et al.

a1 : A(am, c, report-problemc, report-problemc · ask-descriptionam)
a2 : A(am, c, report-problemc · ask-descriptionam · send-descriptionc,

report-problemc · ask-descriptionam · send-descriptionc · explain-solutionam)
. . .

r1 : R(am, ask-descriptionam) r2 : R(am, explain-solutionam) . . .

Fig. 2. Some accountabilities and responsibility assumptions for Incident Management.

either directly or by involving the next level of support – by instantiating a
further scheme.

Figure 2 reports an excerpt of an accountability specification Aincident for in-
cident management. Accountabilities a1 and a2 concern am as a-giver. Account-
ability a1 states that am is accountable towards c for asking for a description
of the incident, after a problem is reported. This requirement means that c can
legitimately expect that, by reporting a problem to am, it will be asked for a de-
scription of the problem. The second accountability has a similar structure, and
states that once the description of the problem has been provided, am should,
in the end, explain the solution, no matter what happens in the meanwhile.

With the accountability specification Aincident as a basis, the designer can
identify a suitable responsibility distribution which fits it. An excerpt of an
acceptable one, concerning am, is also reported in Figure 2.

We, now, briefly explain the realization of the key account manager am agent
obtained by exploiting the pattern presented in the previous section. For each
pair in Ram Aam, a g-plan must be defined, containing the proper well-doing
and wrong-doing e-plans. Let us consider, in particular, the fitting involving
r2 a2. It is implemented by the following plans:

1 +! be_accountable(Ag,ATaker ,What)
2 : .my_name(Ag) & play(ATaker ,customer ,incident_group) &
3 (satisfied (..., explain_solution) = What |
4 done (..., explain_solution ,Ag) = What)
5 <: drop_fitting(Ag,ATaker ,What) {
6

7 +obligation(Ag,_,What ,_)
8 : .my_name(Ag) & can_handle(What) &
9 goalState(sch1 ,ask_description ,_,_,satisfied) &

10 goalState(sch1 ,send_description ,_,_,satisfied) &
11 <- goalAchieved(explain_solution).
12

13 +obligation(Ag,_,What ,_)[artifact_id(ArtId)]
14 : .my_name(Ag) & not can_handle(What) &
15 goalState(sch1 ,ask_description ,_,_,satisfied) &
16 goalState(sch1 ,send_description ,_,_,satisfied)
17 <- createScheme(sch2 , scheme2 , _);
18 ?goalState(sch2 ,provide_feedback_am ,_,_,satisfied);
19 goalAchieved(explain_solution).
20

21 +oblUnfulfilled(O)
22 : .my_name(Ag) & obligation(Ag,_,What ,_) = O & can_handle(What) &
23 goalState(sch1 ,ask_description ,_,_,satisfied) &
24 goalState(sch1 ,send_description ,_,_,satisfied)
25 <- .send(ATaker , tell , operation_failed_error).
26

27

Engineering Multiagent Organizations by Accountability and Responsibility 19

28 +oblUnfulfilled(O)
29 : .my_name(Ag) & obligation(Ag,_,What ,_) = O & not can_handle(What) &
30 goalState(sch1 ,ask_description ,_,_,satisfied) &
31 goalState(sch1 ,send_description ,_,_,satisfied) &
32 not goalState(sch2 ,provide_feedback_am ,_,_,satisfied) &
33 <- .send(ATaker , tell , please_call_again).
34

35 +cancel -fls -request
36 : oblUnfulfilled(O) & obligation(_,_,What ,_) = O
37 <- .send(ATaker , tell , please_call_Again);
38 .drop_all_intentions.
39

40 ...
41

42 }

The outer g-plan is triggered when the agent proactively decides to adhere
to the fitting r2 a2. Once triggered, the g-plan will remain active until the
agent does not drop the fitting (see Line 5). The plans in braces encode the
reactive behavior corresponding to the well-doing and wrong-doing e-plans. The
first two plans, in particular, realize the well-doing part of the pattern. The plans
are triggered as soon as an obligation to explain the solution to the customer’s
problem is issued (Line 7). The obligation’s object (What) is the satisfaction of
the organizational goal explain solution. Indeed, in JaCaMo, the achievement of
an organizational goal fulfills the corresponding obligation. Then, as requested
by the pattern, the contexts of both plans must include the conditions specified
in a2. In JaCaMo we represent these conditions in terms of schemes that were
instantiated and in terms of organizational goals that were achieved. To respect
the fitting-adherence condition, both plans for well-doing, thus, need to include
some actions that amount to explain-solutionam, corresponding to the achieve-
ment of the given organizational goal. This is trivially true in the example (see
Lines 11 and 19). The agent modifies the organizational environment thereby
constructing a sequence of facts that forms the account for the specific goal.

The presence of two plans triggered by the same obligation reflects the inter-
nal choice inside the business process, driven by some local condition. The first
plan is executed when am can handle the problem directly. The second plan,
instead, is executed when the agent decides to ask for support. In this case,
before providing a feedback to the customer the agent will create an instance
of the second social scheme (Line 17). The successful scheme completion will
provide it with a feedback from fls: am can legitimately expect such a feedback
by virtue of another accountability (not reported here), in which it is a-taker.
The feedback, in turn, will enable the agent to execute explain-solutionam. The
third and fourth plans, instead, deal with the wrong-doing part of the pattern.
Should, for any reason, the obligation be unfulfilled, the agent, by virtue of its
accountabilities, must provide a motivation about the violation of the obligation
that binds it to the account-taker. The plan at Line 21, in particular, is triggered
when the obligation is unfulfilled because of a reason that is internal to the am
agent itself. In the fourth plan the obligation becomes unfulfilled because am is
still waiting for a feedback from sls. In both cases, a proper message encoding
the explanation for the failure is sent to the a-taker. The last plan, in turn exem-
plifies how am behaves as an a-taker when receives the account of a failure from

20 M. Baldoni et al.

another (a-giver) agent. Specifically, the plan handles a possible failure coming
from fls raised when it has not satisfied its obligation to provide a feedback.
Event cancel-fls-request corresponds to the message fls sends as an account
of such a failure, and am handles such a failure by asking the customer to call
another time and dropping its current intention(s).

Notably, considering the accountability specification as a requirement, the
actual implementation of the system results more robust. to be accountable, am
must be capable, on the one side, of capturing exceptions from other agents
(specifically, fls), and on the other side, of providing an account to its a-taker
(i.e., the customer).

5 Conclusions

The systematic application of the proposed pattern makes agents aware of the
process as characterization of the goal. Hence, accountabilities provide the pro-
grammer with a behavioral specification the agent has to satisfy. Our approach
is specular to [33], whose objective is to determine whether a group of agents
can be attributed the responsibility for a goal. Once the responsibility can be
attributed to the agents, their accountability is implicitly modeled in the plan
that has been inferred. Here, instead, we aim at developing agents that, by con-
struction, satisfy the organization specification.

An interesting evolution of the present work goes in the direction of an agent-
oriented type checking. Having an explicit organization model, in terms of ac-
countabilities and responsibilities, it would be possible to devise a type checking
system that verifies whether, at role enacting time, an agent possesses all the
necessary plans for role playing. Moreover, since agent-based approaches are typ-
ically declarative, future work will include the exploration of other alternatives
to BPMN process diagrams to depict the collaborative workflows. Declarative
approaches are also used in the information systems area, in particular for what
concerns business process representation. Indeed, OMG has recently released the
issue 1.1 of the document for the specification of Case Management Model and
Notation (CMMN) [24], which is an extension and refinement of the GSM declar-
ative model [21]. Further investigations of these approaches will be the objective
of future research. In particular, CMMN exploits an event-condition-action lan-
guage that bears similarities to the way in which agents are programmed when
using Jason. Still another orthogonal approach is the RALph graphical notation
[9], which focuses more on the assignment of human resources to BP activities
rather than on the strict definition of a workflow.

As an impact, the proposal moves MAOs closer to other paradigms where
exceptions are handled, like the actor model [20], for instance, where actors
that cannot handle an anomalous situation can report exceptions to their par-
ent actors for management, and so forth further up. In an agent-based system
such a scheme is not directly applicable because agents are independent entities,
and show no parent-child relationship. Approaches for modeling exceptions in
a MAS setting have been proposed (see, e.g., [22, 30, 26]). However, no consen-

Engineering Multiagent Organizations by Accountability and Responsibility 21

sus has been reached on the use of such a concept in agent systems. The main
problems rise when trying to accomodate the usual exception handling seman-
tics with the properties of MAS; namely autonomy, openness, heterogeneity, and
encapsulation. Accountabilities provide adequate support to fill this gap.

References

1. Adamo, G., Borgo, S., Di Francescomarino, C., Ghidini, C., Guarino, N.: On the
notion of goal in business process models. In: Ghidini, C., Magnini, B., Passerini,
A., Traverso, P. (eds.) AI*IA 2018 - Advances in Artificial Intelligence - XVIIth In-
ternational Conference of the Italian Association for Artificial Intelligence, Trento,
Italy, November 20-23, 2018, Proceedings. Lecture Notes in Computer Science, vol.
11298, pp. 139–151. Springer (2018). https://doi.org/10.1007/978-3-030-03840-3 -
11, https://doi.org/10.1007/978-3-030-03840-3 11

2. Baldoni, M., Baroglio, C., Boissier, O., May, K.M., Micalizio, R., Tedeschi, S.:
Accountability and Responsibility in Agents Organizations. In: Miller, T., Oren, N.,
Sakurai, Y., Noda, I., Savarimuthu, T., Son, T.C. (eds.) PRIMA 2018: Principles
and Practice of Multi-Agent Systems, 21st International Conference. pp. 403–419.
No. 11224 in Lecture Notes in Computer Science, Springer, Tokyo, Japan (October
31st–November 2nd 2018), http://dx.doi.org/10.1007/978-3-030-03098-8 16

3. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., Tedeschi, S.: Engineering
business processes through accountability and agents. In: Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS ’19, Montreal, QC, Canada, May 13-17, 2019. pp. 1796–1798. International
Foundation for Autonomous Agents and Multiagent Systems (2019)

4. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
Accountability. In: Chesani, F., Mello, P., Milano, M. (eds.) Deep Understand-
ing and Reasoning: A challenge for Next-generation Intelligent Agents, URANIA
2016. vol. 1802, pp. 56–62. CEUR, Workshop Proceedings, Genoa, Italy (December
2016), http://ceur-ws.org/Vol-1802/paper8.pdf

5. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: An Information
Model for Computing Accountabilities. In: Ghidini, C., Magnini, B., Passerini, A.,
Traverso, P. (eds.) AI*IA 2018: Advances in Artificial Intelligence, XVII Inter-
national Conference of the Italian Association for Artificial Intelligence. Lecture
Notes in Computer Science, vol. 11298, pp. 30–44. Springer, Trento, Italy (Novem-
ber 20th–23th 2018), https://doi.org/10.1007/978-3-030-03840-3 3/

6. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
Accountability in MAS Organizations with ADOPT. Applied Sciences 8(4) (2018)

7. Baldoni, M., Baroglio, C., Micalizio, R.: Goal Distribution in Business Process
Models. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA
2018: Advances in Artificial Intelligence, XVII International Conference of the
Italian Association for Artificial Intelligence. Lecture Notes in Computer Sci-
ence, vol. 11298, pp. 252–265. Springer, Trento, Italy (November 20th–23th 2018),
https://doi.org/10.1007/978-3-030-03840-3 19

8. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with JaCaMo. Science of Computer Programming 78(6),
747 – 761 (2013). https://doi.org/http://dx.doi.org/10.1016/j.scico.2011.10.004,
http://www.sciencedirect.com/science/article/pii/S016764231100181X

22 M. Baldoni et al.

9. Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J., Ruiz-
Cortés, A.: RALph: A Graphical Notation for Resource Assignments in Business
Processes. In: Advanced Information Systems Engineering. pp. 53–68. Springer
International Publishing (2015)

10. Chopra, A.K., Singh, M.P.: From social machines to social protocols: Software
engineering foundations for sociotechnical systems. In: Proc. of the 25th Int. Conf.
on WWW (2016)

11. Corkill, D.D., Lesser, V.R.: The Use of Meta-Level Control for Coordination in
Distributed Problem Solving Network. In: Bundy, A. (ed.) Proceedings of the 8th
International Joint Conference on Ar tificial Intelligence (IJCAI’83). pp. 748–756.
William Kaufmann, Los Altos, CA (1983)

12. Dastani, M., Tinnemeier, N.A., Meyer, J.J.C.: A programming language for nor-
mative multi-agent systems. In: Handbook of Research on Multi-Agent Systems:
semantics and dynamics of organizational models, pp. 397–417. IGI Global (2009)

13. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. Ph.D. thesis, Utrecht University (2004), published by SIKS

14. Dignum, V.: Handbook of research on multi-agent systems: Semantics and dynam-
ics of organizational models (2009)

15. Dubnick, M.J., Justice, J.B.: Accounting for accountability (September 2004),
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf,
annual Meeting of the American Political Science Association

16. Feltus, C.: Aligning Access Rights to Governance Needs with the Responsabil-
ity MetaModel (ReMMo) in the Frame of Enterprise Architecture. Ph.D. thesis,
University of Namur, Belgium (2014)

17. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a
model of institutional reality for open multiagent systems. Artificial Intelligence
and Law 16(1), 89–105 (2008). https://doi.org/10.1007/s10506-007-9055-z

18. Garfinkel, H.: Studies in ethnomethodology. Prentice-Hall Inc., Englewood Cliffs,
New Jersey (1967)

19. Grant, R.W., Keohane, R.O.: Accountability and Abuses of Power in World Poli-
tics. The American Political Science Review 99(1) (2005)

20. Haller, P., Sommers, F.: Actors in Scala - concurrent programming for the multi-
core era. Artima (2011)

21. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Fenno
F. Terry Heath III, Hobson, S., Linehan, M.H., Maradugu, S., Nigam, A.,
Sukaviriya, P.N., Vacuĺın, R.: Business artifacts with guard-stage-milestone life-
cycles: managing artifact interactions with conditions and events. In: Proc. of the
Fifth DEBS. pp. 51–62. ACM (2011). https://doi.org/10.1145/2002259.2002270,
http://doi.acm.org/10.1145/2002259.2002270

22. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In:
Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems. pp. 122–129. AAMAS ’05, ACM (2005)

23. Nissenbaum, H.: Accountability in a computerized society. Science and Engineering
Ethics 2(1), 25–42 (1996)

24. Object Management Group (OMG): Case Management Model and No-
tation (CMMN), Version 1.1. OMG Document Number formal/2016-12-01
(http://www.omg.org/spec/CMMN/1.1/PDF) (2006)

25. Object Management Group (OMG): BPMN Specification - Business Process Model
and Notation (2018), http://www.bpmn.org/, online, accessed 08/11/2018

26. Platon, E., Sabouret, N., Honiden, S.: An architecture for exception management
in multiagent systems. Int. J. Agent-Oriented Softw. Eng. 2(3), 267–289 (2008)

Engineering Multiagent Organizations by Accountability and Responsibility 23

27. Ricci, A., Bordini, R.H., Hübner, J.F., Collier, R.: AgentSpeak(ER): An Exten-
sion of AgentSpeak(L) improving Encapsulation and Reasoning about Goals. In:
AAMAS. pp. 2054–2056. International Foundation for Autonomous Agents and
Multiagent Systems Richland, SC, USA / ACM (2018)

28. Singh, M.P.: Distributed Enactment of Multiagent Workflows: Temporal Logic
for Web Service Composition. In: The Second International Joint Conference on
Autonomous Agents & Multiagent Systems, AAMAS 2003, July 14-18, 2003, Mel-
bourne, Victoria, Australia, Proceedings. pp. 907–914. ACM (2003)

29. Sommerville, I., Lock, R., Storer, T., Dobson, J.: Deriving information require-
ments from responsibility models. In: Advanced Information Systems Engineering,
21st International Conference, CAiSE 2009, Amsterdam, The Netherlands, June
8-12, 2009. Proceedings. pp. 515–529 (2009)

30. Souchon, F., Dony, C., Urtado, C., Vauttier, S.: Improving exception handling
in multi-agent systems. In: Software Engineering for Multi-Agent Systems II. pp.
167–188. Springer Berlin Heidelberg (2004)

31. Vincent, N.A.: Moral Responsibility, Library of Ethics and Applied Philosophy,
vol. 27, chap. A Structured Taxonomy of Responsibility Concepts. Springer (2011)

32. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer (2007)

33. Yazdanpanah, V., Dastani, M.: Distant group responsibility in multi-agent sys-
tems. In: PRIMA 2016: Princiles and Practice of Multi-Agent Systems - 19th In-
ternational Conference, Phuket, Thailand, August 22-26, 2016, Proceedings. pp.
261–278 (2016). https://doi.org/10.1007/978-3-319-44832-9 16

