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Abstract. Recently, a wide range of Web applications (e.g. DBPedia,
Uniprot, and Probase) are built on top of vast RDF knowledge bases
and using the SPARQL query language. The continuous growth of these
knowledge bases led to the investigation of new paradigms and technolo-
gies for storing, accessing, and querying RDF data. In practice, modern
big data systems (e.g, Hadoop, Spark) can handle vast relational repos-
itories, however, their application in the Semantic Web context is still
limited. One possible reason is that such frameworks rely on distributed
systems, which are good for relational data, however, their performance
on dealing with graph data models like RDF have not been well-studied
yet. In this paper, we present a systematic comparison of there rele-
vant RDF relational schemas, i.e., Single Statement Table, Property Ta-
bles or Vertically-Partitioned Tables queried using Apache Spark. We
evaluate the performance of Spark SQL querying engine for processing
SPARQL queries using three different storage back-ends, namely, Post-
greSQL, Hive, and HDFS. For the latter one, we compare four different
data formats (CSV, ORC, Avro, and Parquet). We drove our experiment
using a representative query workloads from the SP2Bench benchmark
scenario. The results of our experiments show many interesting insights
about the impact of the relational encoding scheme, storage backends
and storage formats on the performance of the query execution process.

Keywords: Large RDF Graphs · Apache Spark · SPARQL · Spark-SQL·
RDF Relational Schema .

1 Introduction

The Linked Data initiative is fostering increasing adoption of semantic tech-
nologies like never before [1, 2]. Vast RDF datasets (e.g. DBPedia, Uniprot, and
Probase) are now publicly available and new challenges for storing, managing
and querying such data remain unveil. Recently, the Semantic Web commu-
nity started investigating on how to leverage big data processing frameworks
(e.g., Hadoop, Spark) to process large amounts of RDF data [3, 4]. A number
of systems were designed to handle a huge amount of RDF data [5]. In prac-
tice, big data processing frameworks demand data partitioning to exploit the
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full power of a distributed solution. However, a main challenge towards scalable
and distributed RDF query processing is data partitioning. In particular, effi-
cient partitioning of RDF data remains an open challenge [6]. An alternative
approach relies on storing RDF data using a relational schema. To this extent,
the relational RDF storage were proposed [7, 8], e.g., (i) Single Statement Ta-
ble Schema (ST): A schema in which all triples are stored in one single large
table [9, 10]. (ii) Vertically Partitioned Tables Schema (VT): A schema
in which a table for each property with only two columns (subject, object) is
stored [11]. (iii) Property (n-ary) Table Schema (PT): A schema in which
multiple RDF properties are grouped and stored as columns in one table for
the same RDF subject [12]. In general, in relations-based processing of RDF
queries, the design of the underlying relational schema can significantly impact
the performance of query processing [8]. In principle, a systematic analysis for
the performance of Big Data framework on answering queries over relational
RDF storage is still missing. In this paper, we take the first step for filling
this gap by presenting a systematic analysis of the performance of Spark-SQL
query engine for answering SPARQL queries over RDF repositories. In partic-
ular, we experimentally evaluate the performance of various storage backends,
namely, PostgreSQL, Hive, and HDFS with textual and binary formats (e.g.
CSV, Avro, Parquet, ORC). Moreover, we evaluate Spark-SQL under the three
aforementioned relational RDF schemas (Single Statement Table, Property Ta-
bles, Vertically-Partitioned Tables) using various sizes of RDF databases and
different query workloads generated by the SP2Bench benchmark [13].

The remainder of the paper is organized as follows: Section 2 presents an
overview of the required background information for our study. Section 3 de-
scribes the benchmarking scenario of our study. Section 4 describes the exper-
imental setup of our benchmark. Section 5 presents the results and discusses
various insights. We discuss the related work in Section 6 before we conclude the
paper in Section 7.

2 Background

In this section, we present the necessary background to understand the content
of the paper. We assume that the reader is familiar with RDF data model and
the SPARQL query language.

2.1 Spark & Spark-SQL

Apache Spark [14] is an in-memory distributed computing framework for large
scale data processing. Its core abstractions are Resilient Distributed Datasets
(RDDs) and DataFrames, both are an immutable distributed collection of data
elements, but DataFrames are also organized according to a specific schema
into named and data-typed columns like a table in relational databases. Spark-
SQL [15] is a high-level library for processing structured data on top of DataFrames.
In particular, SparkSQL allows the ability to query data stored in the DataFrames
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abstraction using SQL-like languages, optimized using the Catalyst query opti-
mizer3. Last but not least, Spark supports different storage backends for reading
and writing data. In the following, we present those backends that are relevant
for our performance evaluation:
Apache Hive: A data warehouse built on top of Apache Hadoop for providing
data query and analysis [16].

PostgreSQL DB: A popular open-source relational database system which is
designed to handle a various range of workloads, from single machines to data
warehouses or web services that can handle many concurrent users.

HDFS: The Hadoop Distributed File System. HDFS supports the following file
formats: (i) Comma Separated Value (CSV), which is a readable and easy to de-
bug file format that, however, does not support block compression; (ii) Parquet4,
which stores the data in a nested data structure and a flat columnar format that
supports compression; (iii) Avro5, which contains data serialized in a compact bi-
nary format and schema in JSON format. It also supports schema evolution, files
splitting, and data blocks compression. (iv) Optimized Row Columnar (ORC 6),
which provides a highly efficient way to store and process Hive data. However,
unlike Avro, ORC does not support the schema evolution.

2.2 Relational RDF Schemas

The study of efficient storage of RDF data that also supports efficient data access
is still an important research problem. Although there have been some research
proposals for storing and querying RDF data in a non-relational stores, rela-
tional Schemas remains an efficient and scalable solution [17]. In the following,
we present three prominent relational RDF schemas. Moreover, we provide ex-
amples for each schema, using the RDF data in Listing 1.1, and we translate the
SPARQL query in Listing 1.2 into the corresponding SQL query for that given
schema.

: Journal1 rd f : type : Journal ;
dc : t i t l e ” Journal 1 (1940)” ;
dcterms : i s su ed ”1940” .

: A r t i c l e 1 rd f : type : A r t i c l e ;
dc : t i t l e ” r i c h e r dwe l l i ng scrapped ” ;
dcterms : i s su ed ”2019” ;
: j ou rna l : Journal1 .

Listing 1.1: RDF example in N-Triples. Prefixes are omitted.

SELECT ? yr
WHERE { ? j ou rna l rd f : type bench : Journal .

? j ou rna l dc : t i t l e ” Journal 1 (1940) ”ˆˆxsd : s t r i n g .
? j ou rna l dcterms : i s su ed ? yr . }

Listing 1.2: SPARQL Example against RDF graph in Listing 1.1. Prefixes are
omitted.

3 https://databricks.com/glossary/catalyst-optimizer
4 https://parquet.apache.org/
5 https://avro.apache.org/
6 https://orc.apache.org/
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Fig. 1: Single Statement Table Schema and an associated SQL query sample.
Prefixes are omitted.

Fig. 2: Vertical Partitioned Tables Schema and an associated SQL query sample.
Prefixes Omitted.

Single Statement Table Schema is the approach that has been adopted by
the majority of existing open-source RDF stores, e.g., Apache Jena, RDF4J and
Virtuoso, as well as by several centralized RDF processing systems [11, 18]. This
approach requires storing RDF datasets in a single triples table of three columns
that represent the three components of the RDF triple, i.e., Subject, Predicate,
and Object. Figure 1 shows the Single Statements Table representation schema of
the Sample RDF graph shown in Listing 1.1, and the associated SQL translation
for the query in Listing 1.2.

Vertically Partitioned Tables Schema is an alternative schema storage pro-
posed by Abadi et.al. [11] to speed up the queries over RDF triple stores. In
this schema, the RDF triples table is decomposed into a table of two columns
(Subject, Object) for each unique property in the RDF dataset such that the
first (subject) column contains all subject URIs of that unique property, and
the second (object) contains all the object values (URIs and Literals) for those
subjects. Figure 2 shows the vertically partitioned tables schema of the sample
RDF graph shown in Listing 1.1, and the associated SQL translation for the
query in Listing 1.2.

Property (n-ary) Tables Schema proposed to cluster multiple RDF proper-
ties as n-ary table columns for the same subject to group entities that are similar
in structure. As one of the advantages of the Property Tables Schema is that
it works perfectly with the highly structured RDF scenarios, but not for poorly
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Fig. 3: Property Tables Schema and an associated SQL query sample. Prefixes
are omitted.

structured ones [17]. Figure 3 shows the relational flattened property tables of
the RDF graph in Listing 1.1 and the associated SQL translation for the query
in Listing 1.2.

3 Benchmark Datasets & Queries

In our experimental evaluation, we have used one of the most popular RDF
Benchmarks, SP2Bench [13].

3.1 SPARQL Performance Benchmark (SP2-Benchmark) Dataset

SP2Bench is a publicly available, language-specific SPARQL performance bench-
mark. We have chosen SP2Bench for our experimental evaluation, since it is one
of the most well-structured synthetic benchmarks [19], something which per-
fectly fits the goals of our study. In particular, SP2Bench is centered around the
Computer Science DBLP scenario, and it comprises both a data generator that
enables the creation of arbitrarily large DBLP-like documents (in N-Triples for-
mat) in addition to a set of carefully designed benchmark SPARQL queries with
a high diversity score of benchmark query features as stated by Saleem et.al.
[19]. Moreover, these queries are covering most of the SPARQL key operators
as well as various data access patterns. The generated RDF dataset simulates
the real-world key characteristics of the academic social network distributions
encountered from the original DBLP datasets7.

We have reused a similar schema like the relational schema proposed by
Schmidt et.al [17]. In their experiment, the SP2Bench RDF dataset contains nine
different relational entities namely, Journal, Article, Book, Person, InProceeding,
Proceeding, InCollecion, PhDThesis, MasterThesis, and WWW documents. This
schema is inspired by the original DBLP schema8 that is generated by SP2Bench
generator.

7 https://dblp.uni-trier.de/db/.
8 DBLP-like RDF Data Produced by the SP2Benchhttp://dbis.informatik.uni-

freiburg.de/forschung/projekte/SP2B/
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SPARQL ST-SQL N.Joins VT-SQL N.Joins PT-SQL N. Joins Projections
Q1 3 8 5 2 1
Q2 8 28 19 9 10
Q3(a) 1 5 3 2 1
Q4 7 19 11 8 2
Q5(a) 5 16 9 7 2
Q6 8 26 15 6 2
Q7 12 26 16 2 1
Q8 10 23 13 9 1
Q9 3 11 5 n/a 1
Q10 0 3 2 5 2
Q11 0 2 1 2 1

Table 1: SP2Bench Query analysis in terms of complexity (number of joins),
and number of projections for SPARQL query and our three considered RDF
relational schemes (ST, VT, and PT).

3.2 Queries

The set of queries selected for our experiments are associated with the SP2Bench
scenario. These queries implement meaningful requests on top of the RDF data
generated by the SP2Bench generator, covering a variety of SPARQL operators
as well as various RDF access patterns. This list of queries can be found, includ-
ing a short textual description for each query in the benchmark project website9.
Notably, Q9 is not applicable for the PT relational schema.

In our experiments, we focus on two query features that give an indication
of the query complexity, namely, number of joins, and the number of projected
variables. Table 1 summarizes these complexity measures for SP2Bench queries in
SPARQL, and for the SQL-translations that are related to each RDF relational
schema. We use the number of variable projections in the SQL statements as
an indicator for the performance comparison between the data formats of the
storage backends in terms of being row-oriented (e.g., Avro) or columnar-oriented
(e.g., Parquet or ORC).

4 Experimental Setup

In this section, we describe our experimental environment. In addition, we dis-
cuss how we configured our experimental hardware and software components.
Furthermore, we describe how we prepared and stored the datasets. Finally, we
provide the design details of our experiments.

Hardware and Software Configurations: Our experiments have been exe-
cuted on a Desktop PC running a Cloudera Virtual Machine (VM) v.5.13 with
Centos v7.3 Linux system, running on Intel(R) Core(TM) i5-8250U 1.60 GHz
X64-based CPU and 24 GB DDR3 of physical memory. We also used a 64GB
virtual hard drive for our VM. We used Spark V2.3 parcel on Cloudera VM to

9 http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
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fully support Spark-SQL capabilities. We used the already installed Hive ser-
vice on Cloudera VM (version:hive-1.1.0+cdh5.16.1+1431). We have installed a
relational DB PostgreSQL (V. 11.4).

Benchmark datasets: Using the SP2Bench generator, we generated three syn-
thetic RDF datasets with scaling sizes (100k, 1M, 10M triples) in NTriples

format. For SP2Bench, 11 SPARQL queries are provided with their relational
schemas translation10. We have evaluated all of these 11 queries of type SE-
LECT. In some experiments, the results of Q7 and Q9 are missing. In particular,
the results of Q7 is missing for the 10M triples dataset using the Property tables
schemes as its execution time is very long (more than 30 minutes to complete)
even after caching its join tables DataFrames, while the results of Q9 are missing
in all dataset sizes as it is not implemented in the third schema (property tables
relational schema PT) according to [17], and as shown in the early mentioned
SPARQL-SQL translations Webpage. We have used these translated queries from
SPARQL into SQL to be compliant with the Spark-SQL framework in our ex-
periment.

Data Storage: We have conducted our experiments using various data storage
backends and data storage file formats. We have used the Spark framework to
convert the data from the CSV format (generated from processing N-triples files)
into the other HDFS file formats (Avro, Parquet, and ORC). For this step, we
have used the Spark framework, because of its ability of fast handling for the
conversion of large files. Moreover, Spark supports reading different file formats
into and from HDFS. This approach has been also used to load the data into the
tables of the Apache Hive data warehouse (DWH) using three created databases,
one for each dataset size. Converting the data of the CSV files into the Hive
data warehouse has been done in a little bit different way. In particular, to store
data into hive tables, it is a must to enable the support for Hive in the Spark
session configuration using the enableHiveSupport function. Moreover, it is also
important to give the Hive metastore URI using the Thrift URI protocol, also
specified in the Spark session configuration in addition to the warehouse location.
Last but not least, we have also created three PostgreSQL databases, one for
each dataset size, and created tables within them with the expected schema and
data-types for each table according to the different RDF relational schemes (ST,
VT and PT). Then, we have loaded the data into the PostgreSQL tables from
CSV files using the PostgreSQL databases tables ’COPY’ command.

Experiments: The main goal of our benchmarking experiment is to evaluate
and compare the execution times of the SQL translations of the SPARQL queries
over the Spark-SQL framework using the three introduced relational schemes
as well as on top of different storage backends. We have used the standard
SP2Bench SPARQL benchmark as one of the most popular and well-structured
synthetic RDF benchmarks [19]. SP2Bench comes with several SPARQL queries
for evaluating the performance of different triple stores. In this experiment, we
focused on the ’SELECT’ queries of the benchmark. In particular, we selected
11 queries (Table 1) and used their SQL translations to conduct our experiment.

10 http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/translations.html
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The descriptions for the translations from SPARQL to SQL for all schemes (ST,
VT, and PT) are available in the translation page of SP2Bench. We also made
our used SQL translation for the SPARQL queries using the different relational
schemes available in our project repository11

We used the Spark.time function by passing the Spark.sql(query) query exe-
cution function as a parameter. The output of this function is the running time
of evaluating the SQL query into the Spark environment using the Spark session
interface. All queries are evaluated for all schemas and on top of all the different
storage backends Hive, PostgreSQL, and the HDFS file formats namely, CSV,
Parquet, ORC, and Avro.

For each storage backend and a relational schema, we run the experiments
for all queries five times (excluding the first cold start run time, to avoid the
warm-up bias, and computed an average of the other 4 run times).

5 Experimental Results

In this section, we present the results of our experiments and discuss several
interesting insights on the performance of the Spark-SQL query engine using
the various relational RDF storage schemas and the various storage backends.

5.1 Query Performance Analysis

Figures 4, 5 and 6 show the average execution times for SP2Bench queries for the
100K, 1M, 10M triples datasets, respectively. To foster readability, we organized
the figures as follow: on the left side (sub-figures: a, c, and e), we present the
results of short-running queries (Q1, Q3, Q10, Q11) while on the right side
(sub-figures: b, d, and f), we present the result of long-running queries (Q2, Q4,
Q5, Q7, Q8, Q9). Notably, according to Table 1, short-running queries are those
presenting the least number of joins. For all the graphs, the reading key is the
lower the better. Thus, we indicate that a particular configuration outperforms
another one when it takes less time to compute the same query.

Figure 4 illustrates the results for the 100K triples dataset where we can
observe that PT schema outperforms VT and ST, especially for simple queries like
Q1 and Q11, (cf Table 1). Indeed, the PT schema is the one that requires the
minimum number of joins.

Scaling up the dataset size to 1M triples (Figure 5), we notice that for short-
running queries (Figures 5 (a), (c), and (e)), the PT schema is the best per-
forming, followed by VT schema, and finally the ST schema for all queries and
for the majority of storage backends. The same observation can be seen for the
long-running queries (Figures 5 (b), (d), and (f)) of all schemes. Notably, the
PT schema provides a remarkable advantage over the VT and the ST ones for all
queries and for the majority of storage backends, except for PostgreSQL.

Finally, scaling up the dataset size to 10M triples (Figure 6), we observe that
for short-running queries (Figures 6 (a), (c) and (e)), there is a huge performance

11 https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking
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(a) Short running queries ST schema. (b) Long running queries ST schema.

(c) Short running queries VT schema. (d) Long running queries VT schema.

(e) Short running queries PT schema. (f) Long running queries PT schema.

Fig. 4: Query Execution Times for 100K Triples dataset.
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(a) Short running queries ST schema. (b) Long running queries ST schema.

(c) Short running queries VT schema. (d) Long running queries VT schema.

(e) Short running queries PT schema. (f) Long running queries PT schema.

Fig. 5: Query Execution Times for 1M Triples dataset.
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(a) Short running queries ST schema. (b) Long running queries ST schema.

(c) Short running queries VT schema. (d) Long running queries VT schema.

(e) Short running queries PT schema. (f) Long running queries PT schema.

Fig. 6: Query Execution Times for 10M Triples dataset.
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Avro CSV Hive ORC Parquet PostgreSQL

ST100k 0.0% 0.0% 9.1% 54.5% 27.3% 9.1%
VT100K 9.1% 9.1% 0.0% 0.0% 63.6% 18.2%
PT100K 0.0% 40.0% 0.0% 40.0% 10.0% 10.0%

ST1M 0.0% 0.0% 9.1% 81.8% 9.1% 0.0%
VT1M 0.0% 9.1% 0.0% 90.9% 0.0% 0.0%
PT1M 0.0% 0.0% 0.0% 70.0% 30.0% 0.0%

ST10M 0.0% 0.0% 9.1% 63.6% 18.2% 9.1%
VT10M 0.0% 0.0% 0.0% 45.5% 36.4% 18.2%
PT10M 0.0% 0.0% 11.1% 44.4% 44.4% 0.0%

Table 2: How many times a given backend gives the best results?

Avro CSV Hive ORC Parquet PostgreSQL

ST100k 0.0% 18.2% 81.8% 0.0% 0.0% 0.0%
VT100K 0.0% 0.0% 0.0% 18.2% 0.0% 81.8%
PT100K 10.0% 0.0% 0.0% 0.0% 0.0% 90.0%

ST1M 0.0% 45.5% 0.0% 0.0% 0.0% 54.5%
VT1M 0.0% 18.2% 0.0% 0.0% 0.0% 81.8%
PT1M 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

ST10M 9.1% 90.9% 0.0% 0.0% 0.0% 0.0%
VT10M 9.1% 90.9% 0.0% 0.0% 0.0% 0.0%
PT10M 33.3% 66.7% 0.0% 0.0% 0.0% 0.0%

Table 3: How many times a given backend gives the worst results?

increase on the average run times when using the PT schema, followed by the
VT schema which is better than the ST schema for all queries as well as for the
majority of the storage backends except for the PostgreSQL. The same obser-
vation can be seen in the long-running queries (Figures 6(b), (d), and (f)). In
particular, the PT schema is greatly outperforming the VT and the ST schemes.
This is due to the minimal number of joins required by the PT over VT then
followed by ST schema.

5.2 Storage Backends Performance Analysis

Let us now investigate how different storage backends impact the performance
in our experiments. Tables 2 and 3 report how many times a particular backend
achieves the best or the lowest performance, respectively, considering the results
of all experiments.

Considering the dataset with size of 100K triples, we observe that for the ST
schema (Figures 4(a) and (b)), Hive is the lowest performing backend in 81.8%
of the queries, for both short and long-running ones. Hadoop CSV immediately
follows. In contrast, HDFS with ORC file format is the best performing storage
backend in 54.5% of the queries, followed by HDFS Parquet. Notably, Hive and
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PostgreSQL achieve the best for one query out of eleven, respectively Q10 and
Q11.

For the VT schema (Figures 4 (c) and (d)), we notice that PostgreSQL is
the lowest performing storage backend in 81.8% of the queries; HDFS with ORC
file format has the lowest performance for 2 queries out of 11 queries. HDFS
with Parquet file format is the best performing storage backend for 63.6% of the
queries. PostgreSQL immediately follows by outperforming the other backends
in 18.2% of the cases (Query evaluations).

Last but not least, for the PT schema (Figures 4(e) and (f)), PostgreSQL
is the lowest performing storage backend in 90% of the queries, except for Q3
where Avro is the lowest performing one. Equally, HDFS with CSV and ORC
file formats are the best performing backends in 40% of the queries, that we
recall do not include Q9.

Considering the dataset of 1M triples size, for the ST schema (Figures 5 (a),
and (b)), Postgres has the lowest performance in 54.5% of the queries, followed
by CSV (45,5%). ORC is the best performing storage format in 81.8% of the
queries, followed by Parquet and Hive (9.1%).

For the VT schema (Figures 5 (c) and (d)), Postgres is still the lowest per-
forming backend in 81.8% of the queries, followed by CSV (18.2%). ORC is the
best performing backend in almost all the queries (90.9%), except for Q1 where
HDFS CSV has the highest performance.

For the PT schema (Figures 5 (e) and (f)), the performance dramatically
dropped with almost the same outcomes of the VT schema. PostgreSQL is always
the lowest performing backend. While ORC is the outperforming backend for 7
out of 10 queries (Q9 is not applicable here). That is, for queries Q1, Q3 and
Q7, HDFS Parquet has the highest performance.

Regarding the dataset with 10M triple size, for the ST schema (Figures 6 (a)
and (b)), CSV is the lowest performing storage backend with 90% of the queries,
with the exception of Q10 where Avro has the lowest performance. queries. The
best performing storage backend is ORC in 63.6% of the cases, followed by
Parquet (18.2%).

For the VT schema (Figures 6 (c) and (d)), CSV is still the lowest performing
storage backend in 90.9% of the cases, followed by Avro that has the lowest
performance in Q4 this time. ORC has the best performance in 45.5% of the
queries, followed by Parquet in 36.4%, and then PostgreSQL in 18.2%/

For the PT schema (Figures 6 (e) and (f)), that we recall for 10M triple
dataset size do not include neither Q7 nor Q9, we observe that the CSV file
format is the lowest performing storage backend in 66.7% of the cases. The best
storage backends are HDFS with ORC and Parquet file formats both in 44.4%
of the cases. Only for Q4, Hive shows the highest performance this time.

6 Related Work

Several related experimental evaluation and comparisons of the relational-based
evaluation of SPARQL queries over RDF databases have been presented in the
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literature [8, 17]. For example, Schmidt et.al. [17] performed an experimental
comparison between existing RDF storage approaches using the SP2Bench per-
formance suite, and the pure relational models of RDF data implementations
namely, Single Triples relation, Flattened Tables of clustered properties rela-
tion, and Vertical partitioning Relations. In particular, they compared the na-
tive RDF scenario using Seasme SPARQL engine (known currently as RDF4j 12)
that is relied on a native RDF store using SP2Bench dataset, with a pure trans-
lation of the same SP2Bench scenario into pure relational database technologies.
Another experimental comparison of the single triples table and vertically par-
titioned relational schemes was conducted by Alexaki et. al. [20] in which the
additional costs of predicate table unions in the vertical partitioned tables sce-
nario are clearly shown. This experiment was also similar to the ones performed
by Abadi et.al. [11], followed by Sidirourgos et.al. [21] who used the Barton li-
brary catalog data scenario13 to evaluate a similar comparison between the Sin-
gle Triples schema and the Vertical schema. On another side, Owens et.al [22]
performed benchmarking experiments for comparing different RDF stores (eg.
Allegrograph14, BigOWLIM 15) using different RDF benchmarks (e.g., LUBM16)
and RDBMS benchmarks (e.g., The Transaction Processing Performing Council
family (TPC-C) benchmark)17. This work is focused on a pure detailed RDF
stores comparison using SPARQL beyond any relational schemes implementa-
tions or comparisons.

To the best of our knowledge, our benchmarking study is the first that con-
sider evaluating and comparing various relational-based schemes for processing
RDF queries on top of the big data processing framework, Spark, and using
different backend storage techniques.

7 Conclusion

Apache Spark is a prominent Big Data framework that offers a high-level SQL
interface, Spark-SQL, optimized by means of the Catalyst query optimizer. In
this paper, we conducted a systematic evaluation for the performance of the
Spark-SQL query engine for answering SPARQL queries over different relational
encoding for RDF datasets. In particular, we studied the performance of Spark-
SQL using three different storage backends, namely, HDF, Hive and PostgreSQL.
For HDFS we compared four different data formats, namely, CSV, OCR, Avro,
and Parquet. We used SP2Bench to generate our experimental RDF datasets.
We translated the benchmark queries into SQL, storing the RDF data using
Spark’s DataFrame abstraction. To this extent, we evaluated three different ap-

12 https://rdf4j.eclipse.org/
13 http://simile.mit.edu/rdf-test-data/barton
14 https://franz.com/agraph/allegrograph3.3/
15 http://www.proxml.be/products/bigowlim.html
16 http://swat.cse.lehigh.edu/projects/lubm/
17 http://www.tpc.org/tpcc/
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proaches for RDF relational storage, i.e., Single Triples Table Schema, Vertically
Partitioned Tables schema, and Property Tables Schema.

The results of our experiments show that Property (n-ary) tables schema is
able to achieve better performance in terms of query execution times. This is
due to the extensive number of joins and self-joins required by Vertical Parti-
tioned and Single Statement Table schemas. For the same reason, the Vertically-
Partitioned schema works, in most of times, better than the Single Table schema.
Regrading the supported Spark storage backend alternatives, the results have
shown that using columnar HDFS file formats provide better performance for
short running queries. For this, the main reason is that most of the queries of
SP2Bench are with a small number of projections. Thus, columnar file storage
backends are able to perform better. On the other side, Postgres, CSV and Hive
are shown to have the lowest performing storage options, respectively. Last but
not least, scaling up the dataset sizes from 100K to 10 Million triples showed
a dramatic performance enhancements for Property Tables and Vertical Parti-
tioned Table schemas over the Single Statement Table schema. Moreover, with
10M triples dataset, the HDFS CSV file format has been shown to be the lowest
performing storage backend followed by Avro.

As a natural extension of our benchmarking study, we aim to conduct our
evaluations on a cluster deployments with varying node sizes, with more RDF
benchmarks that have different types of queries and more scaling sizes of RDF
datasets.
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