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Abstract. When considering localization systems, one of the most com-
monly employed reference parameters is the so-called two-way ranging.
To obtain this parameter, technologies such as ultra-wideband (UWB)
exploit the signal propagation time between two devices: a target and
an anchor. However, this parameter is not immune to propagation phe-
nomena such as shadowing, reflections, and diffractions frequently found
in indoor environments, leading to a loss of line-of-sight (LOS) condi-
tions between the target and the anchor (i.e., non-line-of-sight (NLOS)
conditions), hence degrading the ranging estimations and, consequently,
the performance of the algorithms used for the localization. This work
studies how the prior knowledge about LOS and NLOS conditions allows
for improving considerably the final position estimations. Results based
on UWB measurements are considered to evaluate the performance of
different positioning algorithms with and without this prior information.
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1 Introduction

Location-based services (LBS) are becoming more popular and demanding with
the accuracy of locating users and objects, especially inside buildings, where it
is well known that satellite tracking systems have no coverage. The demand for
these services requires the use of the so-called sub-meter location systems (i.e.,
positioning errors below one meter).

Ultra-wideband (UWB) is one of the most used technologies in recent years
to achieve sub-meter localization. This technology is based on obtaining the
propagation time (time of arrival (ToA) or time difference of arrival (TDoA),
depending on the variant of the technology considered) between a reference el-
ement (anchor) with a fixed and known location and the target to be located
(tag). From such a propagation time, it is possible to determine the distance be-
tween the two elements (anchor and tag). Using multiple anchors, trilateration
algorithms can be employed to estimate the position of the tag.

Although the propagation times provided by UWB have a much higher pre-
cision and accuracy than those obtained by received signal strength (RSS)-based
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technologies, they are still affected by different propagation phenomena, espe-
cially in indoor environments. Multiple and varied obstacles (walls, ceilings,
people, furniture, ...), shields and signal blockages, reflections, refractions, and
diffractions cause the appearance of multipath propagation between anchors and
tags. Each of these paths presents different propagation times, deteriorating the
ranging precision and accuracy and, therefore, the tag estimated position.

These phenomena are different depending on the visibility between anchors
and tags. Basically, there are two possible path types: line-of-sight (LOS) and
non-line-of-sight (NLOS). In the case of LOS, the shortest path is the one that
provides a good distance estimation between an anchor and a tag. However,
when NLOS appears, the aforementioned phenomena produce secondary paths
that predominate over the shortest one, degrading the distance estimation. If
the different propagation conditions (LOS or NLOS) between anchors and tags
is not taken into account, the positioning algorithms will use noisy or erroneous
information that will cause a poor estimation of the final position of the tag.

This work analyzes the benefits of taking into account the propagation con-
ditions (LOS or NLOS) between the tag and each anchor as prior knowledge
for the location algorithms. Employing a UWB-based system, we carried out a
measurement campaign considering a set of anchors combining LOS and NLOS
propagation conditions with respect to a tag. The obtained measurement data
are available for public use [1] and were also used to assess the performance of
different location algorithms when the propagation conditions (LOS and NLOS)
are known compared to the situation in which the location algorithms cannot
access such prior information.

The article is structured as follows: Section 2 presents the environment where
the measurements have been carried out, explaining how LOS and NLOS prop-
agation conditions are obtained. Section 3 introduces the location algorithms
considered to assess the impact of the prior knowledge about the propagation
conditions (LOS and NLOS). Section 4 details how the experimental data are
used to simulate a more complex scenario. The results are shown and discussed
in Section 5. Finally, Section 6 is dedicated to the conclusions.

2 UWB Measurements

To analyse the effect of LOS/NLOS conditions on the performance of a location
algorithm, ranging measurements in a real environment with unambiguous iden-
tification of these conditions are required. The measurement campaign goal is
just to obtain a real distance-measurement database. These measurements were
obtained in a campaign carried out inside the Scientific Area building, located
in the Campus of Elviña, at the University of A Coruña, Spain.

The hardware used consists of UWB devices manufactured by Pozyx [9].
These devices include a Decawave [2] UWB transceiver and the possibility of
being operated through a USB port or using them as Arduino shields. The
hardware for the tags and the anchors is identical, varying only the firmware
that modifies the behavior according to the desired role. The estimation of the
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ranging is carried out through the round trip time of UWB signals sent from a
tag to an anchor.

To obtain the ranging measurements, an anchor was considered in a fixed and
known position, whereas a tag was placed at different known locations. Thus, in
the LOS scenario, both the tag and the anchor were placed without obstacles
between them. However, in the NLOS scenario, both devices were placed in such
a way that it is impossible to find a direct path between them, hence the only
path for the UWB signal to reach the receiver is through one or more reflections.
The measurements were obtained at different distances between an anchor and
a tag, ranging from 3 m to 16 m spaced 0.2 m apart. Therefore, multiple actual
ranging measurements between a tag and an anchor were obtained at different
distances and with both LOS and NLOS conditions. Notice that the measured
data are publicly available in [1] to other researchers, making the results of this
work reproducible.

3 Location Algorithms

Pozyx devices are able to obtain an estimation of the distance between a tag
and an anchor based on the round-trip ToA of the signal traveling from the tag
to the anchor. When there are multiple anchors in fixed positions and one tag
in an unknown location, the ranging estimations can be used to estimate the
coordinates of this tag:

rTOA,l =

√
(x− xl)

2
+ (y − yl)

2
+ (z − zl)

2
+ nTOA,l,

l = 1, 2, · · · , L
(1)

where (x, y, z)) are the coordinates of the tag, (xl, yl, zl) are the coordinates
of each anchor, rTOA,l are the ranging measurements between the tag and the
anchor l and nTOA,l is an error component modelled as AWGN. If several ranging
measurements are available, the previous equation can be used to estimate the
location of the tag.

Different location algorithms were chosen to test the effects of considering
or not the prior knowledge of the LOS / NLOS condition between a tag and
several anchors. The algorithms were selected among the many of them available
in the literature taking into account their nature. All of them used the ranging
estimations between the tag and the anchors as an information source for their
operations. Sections 3.1 to 3.3 describe these algorithms.

3.1 Linear Least Squares

The linear least squares (LLS) algorithm performs the location task in two steps:
first, (1) is approximated by means of a linearization and, second, a least squares
method is used to find the position that provides the minimum error. There are
several methods to approximate the nonlinear equation in (1) such as those
described in [7, 8, 12].
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3.2 Nonlinear Least Squares

The nonlinear least squares (NLS) is an approach to solve the problem start-
ing from (1) without performing a first linear approximation [6]. Finding this
minimum point is not a trivial task, and there are many different techniques to
achieve it [10]. In this work, we chose to use the Gauss-Newton method [4]. This
is an iterative method that, starting from some given initial point, approximates
the solution in each iteration.

3.3 Iterative Extended Kalman Filter

The Kalman filter is a well-known algorithm to estimate the hidden state of
a system given some observation variables and is widely applied to positioning
problems. The original Kalman algorithm provides an exact solution for this
estimation problem in systems where the observations are linear on the state
together with Gaussian-distributed noise sources. However, when some of these
assumptions do not hold, numerous variations were proposed to overcome these
limitations, such as the Extended Kalman filter [3], the Unscented Kalman filter
[5], and particle filters [11].

4 Experimental setup

To test the effects of using NLOS measurements in location algorithms, a set
of experiments were designed. The aim of these experiments was to study the
effect on the final position estimation provided by the algorithms described in
Section 3 when using a certain number of anchors with different probability of
being in NLOS with respect to the tag. In order to make this study as realistic
as possible, we use the ranging measures obtained in the measurement campaign
described in Section 2.

Before carrying out the experiments, some common tasks were implemented.
Firstly, a method to generate a virtual scenario with an arbitrary number of
UWB anchors was considered. In a virtual 3D environment, we placed anchors
at different fixed and known spatial positions. The coordinates of each anchor
were selected to avoid having two anchors at the same height, whereas the values
of x and y coordinates were selected to equally distribute the anchors on the sides
of a cube.

Secondly, the movement of a tag inside the scenario along a trajectory was
simulated. To perform this task, we used the waypointTrajectory method from
the Sensor Fusion and Tracking toolbox in Matlab™. With this function, we
could define a trajectory based on a sorted set of waypoints.

Thirdly, given a position from the tag trajectory, a ranging measurement
between the tag and each anchor is produced. Since this data is extracted from
a repository obtained from the UWB measurement campaign described in Sec-
tion 2, not all possible distances are available. Therefore, for each anchor in the
virtual environment, we consider the closest distance between the tag and the
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anchor which is available in the repository. Consequently, in order to maintain
the coherence between the distance extracted from the repository and that of the
virtual environment, we move the affected anchor slightly around the position
initially indicated. For instance, suppose that a tag is located at the position
(Px, Py, Pz) and the distance between this point and the anchor A1, placed at
(A1x, A1y, A1z), is 3.16 m. Given that in the ranging measurements repository
only distances spaced 0.2 m apart are recorded (i.e., · · · , 3 m, 3.2 m, 3.4 m, · · · ),
the distance 3.16 m has to be approximated. To solve this problem, we need to
round the distance value to the closest one available from the measurements
(3.2 m in this case). After this rounding, it is necessary to move the position of
the anchor A1 around its original position, so that the distance to the tag is
consistent with this new distance of 3.2 m (exactly as if the anchor had been
placed at a distance of 3.2 m to the tag from the beginning).

Finally, in order to decide if an anchor is in LOS or NLOS with respect to
the tag for a given point of the trajectory, we designed a script that returned
a LOS or NLOS measurement according to a given probability (note that, for
each distance value between the tag and the anchor, there is a LOS and an
NLOS ranging measurement). This was done using a randomised process with
an appropriate probability distribution.

Once the previous elements were completed, the following experiments were
performed:

1. Execution of the algorithms described in Sections 3.1 and 3.2 for the estima-
tion of the positions of a trajectory in a virtual scenario with a fixed number
of anchors. Both LOS and NLOS conditions of each anchor, for the different
tag positions within the trajectory, were determined according to the given
probability. In this experiment, the algorithms consider all ranging estimates
from all anchors, regardless of whether they were in LOS or NLOS.

2. Execution of the algorithms as in the previous case, but now the NLOS
ranging estimates are discarded. Therefore, for each position of the tag, the
number of anchors that provide ranging estimations is variable, depending
on the probabilities of having NLOS situations.

5 Results

Fig. 1 shows a comparison of the mean absolute error of the position estimates
(with respect to the true position) produced by the three considered algorithms:
LLS, NLS, and iterative extended Kalman filter (IEKF). They were tested in
a scenario with 8 anchors placed on the sides of a 9 m × 9 m × 9 m cube with
the goal of estimating the position of a moving tag that follows a rectangular
trajectory at a constant velocity. Each anchor in the scenario has a probability
of producing an NLOS measurement according to the values in the abscissa axis
of Fig. 1. For instance, if the probability of outputting an NLOS measurement
is 0, then the 8 anchors will produce a LOS measurement, whereas if such a
probability is 1, all of them will output NLOS measurements.
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Fig. 1. Mean error of position estimates vs NLOS probability with a rectangular tra-
jectory. Right-hand side ordinate axis: probability of at least four anchors with LOS
propagation conditions.
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Fig. 2. Mean error of position estimates vs NLOS probability with a random tra-
jectory. Right-hand side ordinate axis: probability of at least four anchors with LOS
propagation conditions.
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Fig. 1 shows the results corresponding to the first two experiments described
in Section 4: considering all the anchors and considering only the anchors with
LOS, referred to as “Ignore NLOS” in Fig. 1. Two groups of curves can be ob-
served in Fig. 1. The first group has a very steep slope, with errors starting
at 0.25 m in absence of NLOS and quickly growing up to several meters with
the NLOS probability. These three curves correspond to the first experiment in
which all the measurements were considered by the algorithms. Although we see
a slightly improvement when the IEKF algorithm is used, the overall perfor-
mance is very poor even for low NLOS probability values. Notice that, in this
experiment, the IEKF was configured assuming that all the measurements corre-
spond to LOS propagation conditions since, in this experiment, there is no prior
knowledge about the propagation conditions. This is why the performance of this
algorithm is heavily punished. The second group of curves identified in Fig. 1
exhibits a small slope with an error about 0.5 m. These curves correspond to the
second experiment, in which the NLOS measurements, whenever they occur, are
ignored by the algorithms. We can see how all the three algorithms exhibit much
better results than in the first experiment. Therefore, including only the LOS
measurements and disregarding the NLOS ones improves the positioning error
significantly for the considered scenario because NLOS propagation conditions
yield ranging measurements with a big error. It is important to realize that,
for the LLS and NLS algorithms to work, it is necessary to have at least four
ranging estimates. Otherwise, the position estimated in the previous point will
be used. Note that, in Fig. 1, a curve with the probability of receiving 4 or more
LOS measurements is superimposed in order to have a reference with respect to
the performance of these algorithm. We can see that, when this probability falls
below 0.1 (which corresponds to a NLOS probability value around 0.7 for each
anchor), the error in the estimation grows from about 0.5 m to more than 1 m.

Fig. 2 shows the same experiments as in Fig. 1 but now considering a tag mov-
ing along a completely random trajectory and at a constant velocity. Whereas the
LLS and NLS algorithms exhibit a performance similar to that shown in Fig. 1
for the rectangular trajectory, the IEKF shows a slight deterioration. This is
related to the fact that the IEKF considered in this work does not use an iner-
tial measurement unit (IMU) or additional sensors to gather knowledge about
the tag movement. Thus, the algorithm can only deduce the velocity of the tag
using the ranging measurements. When the tag is moved along the rectangular
trajectory, this estimation can be very precise, since only in the corners of the
rectangle there is a change in the trajectory. However, in a random trajectory,
when the direction of the trajectory is changing all the time, the predictions of
the IEKF are degraded because it does not adapt fast enough to such trajectory
changes.

6 Conclusions

In this study we have confirmed with measurements captured with real UWB
devices how the presence of values obtained from anchors in NLOS can cause
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large errors in the final estimation of position, and how prior information about
the type of propagation condition (LOS or NLOS) can help to improve the
performance of the positioning algorithms. In order to do this under practi-
cal conditions, a system has been created capable of generating a trajectory in
a 3D space and calculating the corresponding ranging estimates from a series
of virtually placed anchors around it, but always based on data coming from
a real-world measurement campaign. Different classic location algorithms have
been considered to analyze how the prior information can be used. Three dif-
ferent experiments were carried out in which the algorithms are fed with 1) the
measurements of all anchors without any additional information about the prop-
agation conditions, and 2) only the measurements corresponding to the anchors
with LOS propagation conditions.The results show the importance of incorpo-
rating the knowledge about LOS/NLOS propagation conditions of UWB ranging
measurements before feeding them to the positioning algorithms.
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