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Abstract. We propose a system to estimate crowd density in an indoor environ-
ment with an efficient number of sensors. There is no conventional system capa-
ble of identifying where to concentrate sensors for measurement. Our system uses 
pre-collected data to analyze crowd density correlation coefficients and identify 
representative areas for placing sensors. In addition, our system uses multiple 
linear regression models to estimate crowd density in other areas where no sensor 
placed, using the data in representative areas and total number of people in a 
venue. We tested our system in Tokyo International Forum, a 5000 m2 exhibition 
center. Our system identified 3 representative areas for placing sensors among a 
total of 56 areas in the exhibition hall. The average estimation error rates for the 
areas without sensors were 1.46 to 1.49 people per minute, which are sufficiently 
accurate for visualizing people density on a heat map. Our system thus can oper-
ate with efficient operating and maintenance cost.. 

Keywords: Crowd Density Estimation, Correlation, Grouping, Linear Regres-
sion. 

1 Introduction 

The estimation of crowd density is widely used in various applications such as safety 
monitoring, traffic control, and smart guiding to ensure a pleasant experience for pas-
sengers. In open space indoor environments like airports, shopping malls, or train sta-
tions, a monitoring system, using heat maps for visualizing the crowd density, can help 
the authorities to keep track of the flow of passengers and identify congested areas in 
order reorganize the distribution of crowds. In order to calculate the crowd density at a 
specific area, most current solutions are using measuring sensors such as security cam-
eras (for visual analysis), ultra-sound sensors, and laser sensors (for positioning analy-
sis). However, each sensor can only measure a certain limited area, so many sensors 
are required for full coverage of an open space venue. Moreover, each sensor is associ-
ated with a recursive operating and maintenance cost. To reduce these costs, a system 
to estimate crowd density of multiple areas in the whole indoor environment with an 
efficient number of sensors is desired. Existing work estimates crowd density in an area 
using features of that area such as census data to estimate population density of a city. 
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But these data are not suitable to estimate a dynamic area in an indoor environment due 
to the difference in estimation resolution and the explanatory data are static. Other work 
estimates crowd density of an area by using the past data of the same area. Nevertheless, 
there is no work proposing a way to identify suitable areas for placing sensors and use 
the crowd density data from the measured areas to estimate crowd density in other ar-
eas. 

Therefore, we propose a system capable of identifying where to place sensors in an 
indoor environment and use the data from the sensors to estimate the crowd density in 
the whole venue. Our system exploits supervised learning technique to reduce number 
of sensors. We have a data collection step to capture the crowd density in different areas 
in different time, and use those correlations in a grouping technique to identify repre-
sentative areas for concentrating the placement of sensors. We then deploy linear re-
gression models constructed from the collected data to estimate crowd density in other 
areas and create a heat map of the indoor environment. 

To test our system, an experiment in Tokyo International Forum, a 5000 m2 exhibi-
tion center, was performed. We used 56 laser sensors to measure crowd density in the 
whole venue for a day, then reduced the number of sensors to 5 for another day to 
estimate the crowd density of the whole venue. Each sensor could measure the crowd 
density in an area of 10 m × 10 m. The average estimation error rate was 1.46 to 1.49 
people per minute. Such results are sufficient to visualize the crowd density in a heat 
map accurately. Our result has shown that our system can work well in indoor environ-
ments where crowd density in different areas are highly correlated, e.g. exhibition cen-
ter, museum, aquarium, etc. 

This paper is a summarized version of another more detailed paper, which can be 
accessed at: http://bit.ly/ipin2019-nguyenp [13] 

2 Proposed system 

In this section, we describe in detail how our system works. We use a supervised learn-
ing method, which includes a step for data collection and a step for building models 
and deploying them. In data collection step, we use crowd density measuring sensors 
such as security cameras and laser sensors for a full coverage monitoring in a targeted 
venue for a day. We use the data in the collection step to calculate correlations of crowd 
density among all areas in the venue. Based on the correlation value, we group areas 
and shortlist representative areas for keeping the measuring sensors. We then construct 
linear regression models for other areas by least square method, using the data in the 
representative areas and total number of people in the venue as the explanatory varia-
bles. In the deployment step, we use the data collected from representative areas to 
estimate the crowd density of other areas. We have a hypothesis that the linear regres-
sion models built by the data collected previously are still accurate for a certain time. 
In our experiment section, we will explain our validation on our models by using them 
to estimate the crowd density of the whole venue based on data from the previous day. 

The details in each step of our system are explained in these following steps: 

  Step 1. Data collection and correlation coefficients calculation. 
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  Step 2. Areas grouping and representative areas identification.  

  Step 3. Estimation with linear regression models. 

2.1 Data collection and correlation coefficients calculation 

In order to select representative areas for placing sensors, we need to collect data of 
crowd density in the whole area for a certain time. 

The whole venue is sliced and divided into a grid, where each cell is monitored by a 
crowd density measuring sensor. The size of each cell in the grid is decided by the meas-
uring capability of a sensor. For example, a security camera can monitor the area with 
the size of 5 m × 5 m, or a laser sensor can capture the location of people in a 10 m × 10 
m area, therefore, the size of a cell can be decided based on type of sensors and their 
specification. Each cell monitored by a sensor is referred to by the grid reference. On a 
two-dimensional map, a cell is identified by its row and column number. In this paper, 
we number the rows from top to bottom, and the columns from left to right as illustrated 
in Fig. 1.  

During the data collection step, we collect data of crowd density measured by each 
sensor in each cell continuously. For each time interval, we count how many people in 
average inside a cell. Therefore, a data vector is used to store the average number of 
people in a cell: 

D(i,j)[ dt1, dt2, dt3, … , dtn] 

where: 

• t1, t2, ..., tn is the sampling time;  
• D(i,j) is a vector of crowd density in cell at row i and column j. 
• n is the total number of data points collected;  
• dt is the number of people inside cell (i,j) at time t. 

After the data is collected for a certain time, we calculate correlation coefficients of 
crowd density of every pair of cells. The crowd density correlation coefficient between 
a pair of cells is calculated according to  Pearson’s correlation [10] formula: 

 

  (1) 

 
where: 

• n is the total number of data point collected in a cell. 
• D(i,j) is a vector of crowd density in cell at row i and column j. 
• D(k,e) is a vector of crowd density in cell at row e and column k. 
• r(i,j)(k,e) is the correlation coefficient between D(i,j) and D(k,e) 
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The correlation coefficients measure the linear relationship between two cells, giving 
a value between -1 and +1 inclusive, where 1 is a perfect positive linear relationship, 0 
is no relationship, and -1 is a perfect negative linear relationship. The correlation 
coefficients between a pair of cells has commutative property (e.g. correlation 
coefficient of D(1,2) and D(3,4) is the same with correlation coefficient of D(3,4) and 
D(1,2)), so we can remove the redundant calculations when we calculate the correlation 
coeffcients of every pair of cells. The results of calculating correlation coefficients can 
be stored in the upper half of a correlation matrix or correlation coefficient table. 

2.2 Areas grouping and representative areas identification 

We want to identify the strength in relationship among pairs of cells, therefore we con-
vert all the correlation coefficients into their absolute value. The highly correlated pairs 
have the absolute correlation coefficients close to +1. By using a correlation coefficient 
threshold γ from 0.5 to 1, we can filter out those pairs whose relationships are weak. 
For example, if we choose the threshold γ to be 0.7, all pairs with absolute value of 
correlation coefficients lower than 0.7 will be removed from the table. The correlation 
coefficient table after filtering should only have the pairs with strong linear relationship. 
We call the table after filtering “highly correlated areas table”. 

In this table, a cell is linked with another cell with a high correlation coefficients. 
By iterating through all the links, we put linked cells into the same group. Two groups 
of cells will be distinguished if there is absolutely no link between any pair of cells 
belonging to each group. After the iteration, m groups can be identified, with 0 ≤ m ≤ 
N/2, where N is the total number of cells of the grid. Number of groups m depends on 
the value of threshold γ, as γ is higher (closer to 1), m is smaller because more links are 
filtered out the highly correlated areas table. 

In each group, a representative cell with the highest sum of the absolute value of 
correlation coefficients in highly correlated areas table is selected. The representative 
cells are the most suitable areas for concentrating the placement of sensors, and use the 
data collected in those cells to estimate other cells of the grid. 

After grouping cells in the highly correlated areas table, there might be some other 
cells not belonging to any group because they were filtered out. Such cells are put into 
their respective groups by comparing their correlation coefficients with the representa-
tive cells. And cells which does not have any crowd density (e.g. due to blockage, se-
curity, etc), will have the default value of 0 crowd density. 

The pseudocode of this step is provided in Fig. 1.  

2.3 Estimation with linear regression models 

The representative cells are where the crowd density measuring sensors are placed in 
order to collect data for explanatory variables in our regression models. Another 
explanatory variable in the linear regression model is the total number of people in the 
venue. To calculate the total number of people, measuring sensors are set up at entrances 
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and exits of the venue in order to count how many people enter and how many people 
leave the venue.  

In the other words, our linear regression models use total number of people in the 
venue and the crowd density in a representative cell to estimate crowd density in other 
cells of the grid. The expression of the linear regression model is explained as follows: 

   (2) 

where: 

• D(i,j) is a vector of crowd density in cell at row i and column j, which is in the same 
group with representative cell at row c and column f. 

• D(c,f) is a vector of crowd density in representative cell at row c and column f. 
• t is the time step measured. 
• P(t) is the total number of people in the venue in time t. 
• β1 and β2 are the coefficients of a regression model for each estimated cell. 
• α is a constant default value of crowd density in a regression model for each esimated 

cell. 

Each cell has its own model, using crowd density data in the representative cells and 
total number of people in the venue as the input. A heat map can be visualized after 

)()()( 2),(1),( tPtDtD fcji bba ++=

Input: cell1, cell2 are 2 vectors storing the name of cells under tuple type (i,j) in highly correlated ar-

eas table, where cell1[i] and cell2[i] have correlation coefficients higher than γ. 

Initialize count = 0, group = dictionary((i,j),0) with (i,j) is a tuple in cell1 and cell2, groupName = 1  

for i = 1..len(cell1) do: 

   if group[cell1[i]] == 0 and group[cell2[i]] ==0 then: 

          group[cell1[i]] = groupName; 

          group[cell2[i]] = groupName; 

              groupName += 1; 

   elif group[cell1[i]] != 0 and group[cell2[i]] ==0 then: 

          group[cell2[i]] = group[cell1[i]] ; 

   elif group[cell1[i]] == 0 and group[cell2[i]] !=0 then: 

          group[cell1[i]] = group[cell2[i]] ; 

   elif group[cell1[i]] != 0 and group[cell2[i]] !=0 then: 

      if group[cell1[i]] == group[cell2[i]] then: next; 

      elif group[cell1[i]] > group[cell2[i]] then: 

            group[ which group.value()==group[cell2[i]] ]=group[cell1[i]]; 

             next; 

      elif group[cell1[i]] < group[cell2[i]] then: 

            group[which group.value()==group[cell1[i]]]=group[cell2[i]]; 

            next; 

Fig. 1. Pseudocode for putting cells into different group 
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crowd densities in all cells are estimated to help the authorities identify congested areas 
and monitor the distribution of crowd in an indoor environment. 

3 Experimental Setup 

To validate our method, we set up an experiment to collect crowd density data in an 
exhibition center. We chose Hitachi Innovation Forum (HIF) event, a large exhibition 
show, as the experimental field for evaluating our proposed method. The event was 
held in Tokyo International Forum [11]. Table I summarizes the detailed specifications 
of the experiment. 

According to size of the field, we divided it into a grid with 72 cells (6 rows x 12 
columns), with each cell size is 10 m × 10m. However, we only placed laser sensors in 
56 cells because 16 cells were impassable to visitors. Each laser sensor can capture the 
number of visitors and exhibitors within the size of a cell. We counted the average 
number of people in each cell in every minute.  

 
We collected data of the exhibition event for 2 days as we used the first day for 

identifying the representative cells and building the linear regression models, and the 
second day for testing and validating our proposed method. 

Table 1. Experimental settings 

VENUE TOKYO INTERNATIONAL FORUM 

DATE  30th – 31st October 2014 

TIME 9:00am – 6.30pm 

POSITIONING TECHNOLOGY Laser Sensors 

SENSOR MAKER SICK [12] 

NUMBER OF SENSORS 56 

VENUE SIZE 5000 m2 

 

4 Results and Evaluations 

We calculated the correlation matrix among all the cells in the first day of the exhibi-
tion, 30th October 2014. The correlation matrix included the correlation coefficients of 
all the pairs of cells.  

We use threshold γ = 0.7 to filter out cell pairs which have absolute value of corre-
lation coefficients smaller than 0.7. Only 16 pairs of cells are identified in the highly 
correlated cells table.  

After that, we put highly correlated cells into groups so that in one group all the cells 
were linked with each other by their correlation coefficients. According to the data in 
the first day (30th October 2014), we could identify three groups: group 1 included 
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(2,3), (2,4), (3,4) and (4,6); group 2 included (2,6), (3,5), and (3,6); group 3 included 
(2,8), (2,9), (3,7), (3,8), (3,9) and (4,8). In each group, the cells which have highest sum 
of absolute value of correlation coefficients are (3,4), (3,6), and (4,8). We chose those 
3 cells as the representative cells for keeping the sensors, and removed other sensors 
from all other cells. The remaining cells were put into the three groups by comparing 
the correlation coefficients with the representative cells.  

Based on the data collected on 30th October 2014, we constructed a linear regression 
model for each cell based on formula (2), excluding the representative cells. We eval-
uated our estimation by 10-fold-cross-validation (10-fold CV) technique on 30th Octo-
ber and used the models training on whole data on 30th October to estimate the crowd 
density on 31st October with only using data from representative grids. The average 
error rates are 1.49 people per minute on 30th October and 1.48 people per minute with 
new data on 31st October. Fig. 2 shows the example of the estimation results for (3,7) 
in each day. 

According to the histogram, most of the average errors were less than 1 people. In 
addition, 95% of average errors were less than 2.5 people. 

80% of maximum errors were less than 15 people. There is an extreme case where 
the error has crossed over 80 people. 

We also validated our method by using data on 31st October as training data and 
data on 30th October as test data. The results had average error rates of 1.47 people per 
minute for 10-fold-cross-validation on 31st October, and 1.46 people per minute for the 
test data of 30th October. 90% of average errors were also less than 2.5 people. In 
addition, 75% of maximum errors were below 5 people. These results indicated that our 
proposed method was reliable for deploying in exhibition center with robust estimation. 

5 Conclusion 

This paper has presented a system for crowd density estimation using efficient number 
of sensors in indoor environment. Our system uses a supervised learning approach. We 
used pre-collected data to analyze correlation coefficients of crowd density among all 
areas in the venue. Based on the analysis results, we identified representative areas for 
concentrating the placement of sensors. Using the data collected from representative 
areas, we could estimate the crowd density of other areas in the whole venue using 
linear regression models. 

To validate our system, we have trailed it in a 5000 m2 exhibition center. After 
collecting data for a day, we identified 3 areas that have high correlation coefficients 
with other areas. We used them as representative areas and we placed a sensor for each 
area. In addition, we placed 2 additional sensors at the entrance and exit to count the 
total number of people in the venue. Using the data collected from representative areas, 
we estimated the crowd density of other areas with average error rates ranging from 
1.46 people per minute to 1.49 people per minute. These error rates are tolerable for 
visualizing crowd density of the whole exhibition center on a heat map and useful for 
monitoring the distribution of crowds in the venue. In other words, our system only 
used 5 sensors instead of 56 sensors for visualizing crowd density in the exhibition 
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center, therefore theoretically reducing the cost of operating and maintaining the infra-
structure. 

In the future, we plan to validate our system in various indoor environments such 
as airports, train stations, shopping malls, etc. The number of identified representative 
areas may depend on the characteristics of the indoor environment. We also plan to 
validate our system in a longer period in order to quantify the effect of seasonal drift 
on our system. 
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