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Abstract. We investigate dead reckoning with foot-mounted inertial
measurement unit. To improve accuracy of navigation the ZUPT (zero
velocity update) technic is commonly used, aiding the IMU with infor-
mation on zero foot velocity during the stance phase of a step. This
information is fed to a extended Kalman-type filter. The state vector of
the filter usually contains position, velocity and orientation of the IMU.
We show that the ZUPT condition can be written in two ways of which
the most commonly used yields inconsistent results. For that purpose
we employ covariance analysis. We suggest a decomposition of the error
equations into the so-called dynamic and kinematic errors and decom-
pose these equations into four simple subsystems. For each subsystem,
error covariance can be written in explicit formulas.
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1 Introduction

Pedestrian navigation is a fast developing branch of navigation where different
systems are used to determine the user’s position and velocity. Some systems
are based on smartphones and use internal sensors (accelerometers, gyroscopes
and magnetometers) and GNSS receivers, others use the WiFi or lidar signals.
Following [1], [2], we investigate dead reckoning with foot-mounted inertial mea-
surement units (IMU). To improve accuracy of foot-mounted systems the ZUPT
technic is used [3]. The idea of ZUPT is to aid the IMU with information on
zero foot velocity during stance phase of the step. This information is fed to an
extended Kalman filter (EKF) or a UKF filter [4]. The state vector of a filter
usually contains position, velocity and orientation parameters of the IMU. Some
authors tried to add sensors errors to the state vector, but this usually doesn’t
give significant improvement of accuracy.

In our opinion, analytical formulas for accuracy bounds are of interest. In the
EKF framework the navigation accuracy is determined by the errors covariance.

* This research was partly supported by the Huawei company and RFBR.
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In a recent paper [5] covariance analysis of pedestrian navigation was done un-
der certain simplifying assumptions. One of the assumptions was that the IMU
is accurate enough so that the computed and the true velocity of the system
during the ZUPT phase are very close. In our experience this assumption is not
always valid, especially for low grade IMU with unstable gyro drift, and taking
it can lead to some paradoxes. For example, when looking at the covariances, the
azimuth angle seems observable. By the definition given in [6], the corresponding
EKF is inconsistent. Note that inconsistency of EKF is a well-known feature in
the SLAM community, where a modification of EKF preserving observability
properties was suggested in [8] .

In this paper, we investigate analytically covariances of EKF for pedestrian
dead reckoning. We make simplifications other than in [5], assuming that the
ZUPT phase is instantaneous. We provide analytical formulas for covariances of
errors in velocity, position and orientation. We write down two forms of ZUPT
equation and by looking at covariances claim that only one of them yields a
consistent EKF. One feature of our approach is that we transform the error
equations into the so-called dynamic and kinematic errors. This transform is
well-known in high precision inertial navigation [7], but, to our knowledge, is
not used in the pedestrian dead-reckoning settings.

2 Notation

Definitions Consider an IMU mounted on a pedestrian’s foot. The IMU con-
tains three component micro electro mechanical accelerometer and gyroscope.
Let us introduce some definitions and coordinate frames.

— M is the sensitive mass of the accelerometer triad. When we talk about IMU
position, we mean position of M.

— O is some reference point fixed on the ground. We shall set O as the start
point of the pedestrian trajectory.

— On = Oningng is the navigation frame fixed on the ground. The Ons axis
points up; direction of other axes will be specified later.

— P, Uy are the position and velocity of M in the On frame. Here and below
the subscripts denotes the coordinate frame the vectors are referred to.

— Ms = Msysass is the sensor frame, fixed on the IMU body. The axes
M sy, Mso, Mss coincide with accelerometer axes of sensitivity. Orientation
of Ms relative to On is given by the quaternion g, ,. The angular velocity
vector of M s relative to Mn projected onto the Ms axes is denoted ws.

— M's' = M's]s)s} is the computed sensor frame. The position p/, of the point
M’ is the computed position of M. Orientation of M's’ is close to orientation
of Ms and is given by the vector of small rotation 3,. The angular velocity
vector of M's’ relative to Mn projected onto M’s’ is denoted by w?,.

* The authors would like to thank Mikhail Pikhletsky (pikhletsky.mikhail
@huawei.com), who called our attention to these results.
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— Mz = Mz 2523 is the so-called virtual platform frame. This reference frame
is close to the On frame. Orientation of Mz relative to Mn is given by the
vector of small rotation 3,,. Orientation of M's relative to Oz is given by the
quaternion gq,, .

It is convenient to set the origin of all the frames at the same point O,
introducing the frames Os, Os’, On, Oz. The frames form the following diagram:

On i>OZ

Tow  Jaw

0s —P= 0s
Denote by R, s = R(q,,,) the rotation matrix corresponding to the quaternion
q,.- Coordinates transformation can be written as p,, = R,sp,. Denote by
Aq(B,) quaternion corresponding to the vector of small rotation 3,.
Let f,, ws be the specific force and the absolute angular rate of IMU. Ac-
celerometer and gyro measurements are written as (rs, €5 are the errors):

fo=Ff+rs W, =ws+es

Mechanization and error equations Let X be the state vectors and X’ be
the computed state vector:

Py p,
X=|v,]|, X' = | v,
qns an,

The mechanization equations and the computed mechanization equations can
be written as [1], [2]:

pn = Un, p;l = ’U;l’

by = R(q, ) fs+9n (1) b, = R(qu ) f + Gnr (2)
) . . 1,

dns = _5("‘)5 "y, qns = _Ew./s "Qp-

Here @ is the quaternion (0, w1, ws,ws), the dot is quaternion multiplication.
For aided navigation and accuracy analysis we need the errors vectors and
the errors equations [2]. The errors vector is = (Ap,,, Av,, 8,,)T, where
Apn :p;L — Pn» Av’ﬂ :’U’/n,_,vna

and 3,, is the small rotation angle vector between the virtual platform and the
reference frame: q,, = Aq(B3,,) - q,,- Note that the dimensions of X,z are
different, thus state update is a bit different from the standard EKF formulas.
The errors equations can be written as:
Apn = Avn;
Av, = £l xB, +Tn, (3)
B, = éen.
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The ZUPT observations in errors are usually written as (see, e.g. [2])

z=7'—7=v = Av, + Az. (4)

3 Covariance analysis

Dynamic errors Observability analysis of (3), (4) is rather difficult. We suggest
to make a change of variables, introducing the so-called dynamic errors ép,,, vy,
as in [7]:

Ap,, = 6p,, + P, X 8,, Av, = v, + v, X3, (5)
This change of variables is best understood with the following formulas:

Av, =v), —v, +v, —v, =0, —v,+( — B,X)v, — v, = v, + v, X3,
—_——
Sv,

Below we call Ap,,, Av,, the full errors. In dynamic errors (3) can be written as

5pn = 5’071 _pn XEn,
vy = — g, X8, — VnXEn + 1T, (6)
B, = ¢en.

ZUPT measurements in dynamic errors In dynamic errors (4) becomes
z = dv, + v, x 3, + Az. (7)

The last formula looks strange: when v/,; # 0 or v],, # 0, B3 enters the measure-
ment, though the azimuth is obviously unobservable. Thus when we construct a
EKF aided with (7) the filter is inconsistent [6], [8]. This means that ZUPT in
the form (4), which is the most commonly used, is also wrong. Let us look at the
problem from the mechanical point of view: the measured ZUPT velocity must
be attributed to the body frame Ms, or, equivalently, to the virtual platform
frame Oz (rotation g,s between these frames is known), while the computed
velocity v!, is in the navigation frame On. The difference of two quantities is
v, — v,. We get the following:

Corollary 1. The correct formula for ZUPT observations is z = v, —v, & dv,,.

To summarize, we got two ZUPT observations forms, referred to as forms D, F,
where form F is unsound, but commonly used.

Form D - in dynamic errors: z = dv, + Az, (8)
Form F — in full errors: 2z = dv,, + v, x 3, + Az. 9)

Note that equations (6), (9) are equivalent to (3), (4). Note also some ad-
ditional advantages of using dynamic errors. First, f, which is a time varying
function, is absent in (6). Thus the state matrix is time invariant. Second, the
equations can be decomposed into that of horizontal and vertical motion, as

shown below.
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Covariance analysis: case D For analytics, we assume that the step duration
T is constant, the zero velocity interval can be considered very short, and the
noises 1y, &, in (3) are white noises with PSD o’?, o2. The ZUPT error Az is
assumed a random vector with zero mean and mean square o2. For brewity we
drop the primes in computed values, writing p; instead of p}, etc.

First we consider the system (6), (8). We can split it into three weakly coupled
and one independent systems of equations in horizontal motion (dps, dva, 81),
(0p1,0v1, B2), azimuth rotation B3, and vertical motion (dps, dvz). Since we are
interested in horizontal motion, we write down the first three:

dp1 = Sv1 — pags + psea, dp2 = dv2 + p1€3 — P3€1,
001 = — g2 + 11 + U362 — VaE3, 02 = gB1 + 12 — v3er + vi€s,
By = €3, (10) B = e, (11)
z1 = 0vy + Az 29 = 0vg + Axzs.
B3 = es. (12)
The systems are time dependent but periodic; observations take place at ev-
ery tpy = kT, k =0,1,2,... The sequence of covariance matrices of z in standard
notation is written as
P, =FP! | FT +GQG, (13)

P,=P; - P H'(HP H" + R)"'HP.

Here P, denotes posteriori covariance at tj, (after ZUPT); P, denotes a priori
covariance at ty (before ZUPT). Whenever possible, we drop the index k. A
system is observable, if the covariance matrix tends to a stationary solution.
This solution can be found as the stationary point of (13).

Let us start the analysis with (10), (11). We assume that the pedestrian walks
over horizontal ground, thus vs < vy, v2, and neglect the terms vseq, v3e; in the
velocity equations. Dropping the position equations (we look at that later), and

neglecting the ZUPT error in the measurement equations °, we obtain
001 = — gP2+ 11 — vaes, 002 = gP1 + 12 + vi€s,
B2 = 2, (14) fr = e, (15)

z1 = 0v1. 2o = Ova.
The solution of (13) for (14), (15) can be found as

UZ;T 2
Psy,5,=0, Psy,, =0, pgi:T(1/1+4%i+1), (16)

2 T3
Py, = %g (V452 +1+1) + 03T,
02T, _ o2gT? , |

5 The last assumption can be argued since in real world the person’s foot is moving
during the stance stage, but we can’t proceed further analytically without it.
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Here i # j are 1 or 2 and we denote

0%
029*T?’
where the bar denotes the mean value of a function during a step. Now we turn
to (12). The system is completely unobservable, and ﬂg‘ i 1S just random walk:

0]2%- = UJ% + v_f»af,, ;= (18)

P33|k+1 = Pﬁz\k—i_UiT' (19)
Covariance analysis: case F Here we prove inconsistency of form F. We
can split (6), (9) into three weakly coupled and one independent systems of
equations in (83), (0p2,dve, £1), (6p1,0v1, B2), (0p3,dvs), of which we consider
the first three. Under the same assumptions as above, and dropping again the
equations for dpy, dps, we obtain

001 = — gPa +r1 — vaes, 002 = gP1 + 12 + vi€s,
By = e, (20) pr=e1, (21)
21 = 6v1 + v P3. 29 = dva — v1 3.
/33 = £3. (22)
The systems (20) — (22) are interconnected due to the terms v2f3, v1/33

in the measurement equations and can be shown to be observable in the non-
stationary sense. To proceed with covariance analysis, we again assume that
v1,ve are small at the ZUPT phase. We conclude the following.

Proposition 1. When ZUPT computed velocity is close to zero, stationary co-
variances of dvy, B2, 0ve, B1 for (20), (21) exist and are given by the asymptotic
formulas (16).

With this result we can rewrite the observations equations in (3 as

53 = €3, 02gT3
21 = (5’U1 + 1)2,83, P&,i = w2 <\ / 4_%12 + 1 =+ 1) + U?ciT. (23)

29 = dvg — 153,

Here 6v;, i = 1,2 can be treated as observation noises with known intensity Ps,,.
Seeking again for the stationary solution of (13) for (23), we obtain, dropping
terms of higher order in vy, vy

2

v2 p2 \ M2
Ps, = \/awT< 2+ 1 ) : (24)
P&’U'[ P&’Uz

Corollary 2. For ZUPT observation in form F the heading angle is false observ-
able with error covariance given by (24). The EKF is inconsistent. For ZUPT
observation in form D the heading angle is unobservable. The EKF is consistent.

Thus writing error equations in dynamic errors with ZUPT observation in
form D is preferable. This result is illustrated in Fig. 1.A, where we compare
STD of yaw errors with ZUPT observations in forms D and F. Further on, we
assume that ZUPT equations in form D only are used.
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Fig.1. A: Yaw angle STD with D and F ZUPT observation models. We see that in
case F' the yaw STD doesn’t grow steadily, as it should. B: Dynamic and full position

errors STD P;p/f, P;}f;, Pifz. The full position error STD changes with the distance

travelled due to the presence of p1 s term in the formula for that error. The walk was
for 3 minutes forward-backward.

Covariances of dynamic position errors Position errors dp; dps are unob-
servable, and behave like random walk. To find parameters of this random walk,
we turn again to covariance iterations, now for (10), setting there covariances
for dv1, dva, 1, B2 to their stationary values (16). We obtain iterations

_ 2,2 _ 2 —
Pépi|k+1 = P5pi\k + Qi+ Uprja P5p1ﬁ3|k+1 = P5p1ﬁ3|k —o0,1'p2,
_ 2 _ 2 —
P5P15P2\k+1 - P5P15P2\k - O—prlp% P5Z72ﬁ3|k+1 - P5102ﬁ3|k + Jprl'

where

03,T%  J1+432+1
Q=4 A -2 (25)
4 22+ /1+437 +1

Covariances of full position errors For applications one is more interested
not in dynamic, but in full errors. Since

Apy = 0p1 + p2fs, Apy = 6p2 — p1S3,

the full position errors are modulated by the distance travelled. To find out how,
suppose that the pedestrian walks strictly in the On, direction: ps(t) = 0. Then
we can write for a series of k steps (assuming initial errors to be zeros):

Pap, ap, =0, Pap, gy, =0,
Pap,gs = 0ok (P1 — 1), Ps, = 02kT,

PAPz = Q?k + O'E)kT(p_%-i-p% - 2]9_1]91)7 PA;D1 = Qlk
Contrary to (18), here the bar denotes the average during the whole walk.

Corollary 3. Position error in the direction of travel is uncorrelated with the
azimuth error. Position error perpendicular to the direction of travel is correlated
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to the azimuth error with correlation coefficient given by the formulas

Nl=

R— . Q —_
p% _p12 + UEQT
(Pr —p1)?  (p1 —p1)?

Kﬂpzﬁs =1+

When the pedestrian travels far (p; = max), the coefficient reaches its max-
imum; when the pedestrian returns to the center position (p1 = p1), the coeffi-
cient becomes zero: position and azimuth become uncorrelated. The difference
between covariances of dynamic and full position errors is illustrated in Fig. 1.B.

4 Conclusions

Covariance analysis of pedestrian dead reckoning with foot mounted IMU was
done analytically under simplifying assumptions. The main result of the paper
is that care must be taken when writing the ZUPT measurement equations for
EKF in the case of low grade sensors. If written in one commonly used form,
these equations yield inconsistent EKF. A consistent form of ZUPT equations
was suggested. Another result is that when writing the error equations of IMU
in the so called dynamic errors, these equations can be decomposed into four
nearly uncoupled subsystems to simplify the covariances analysis. Experiments
results are not discussed here for lack of space.
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