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Abstract. The indoor localization technology is bringing great conve-
nience in location-based service (LBS) recent years. Most high-accuracy
localization system is expensive and highly dependent on custom device
instead of smartphone. In this paper, we propose a high-accuracy indoor
localization system with fusion of smartphone acoustics and Pedestrian
Dead Reckon (PDR) for pedestrians. Acoustic signals are designed with
high frequencies chirp which is above the threshold of human auditory.
Time Difference of Arrival (TDOA) is adopted to eliminate the synchro-
nization with the broadcasting infrastructure. For more convenience of
pedestrians, inertial sensor is introduced to analyze human gesture and
gait. We revise Extended Kalman Filter (EKF) to adapt coarse-grained
combination and different performance of acoustic and inertial sensors.
The experiments show that Pals system can achieve localization error of
0.28 meter within 95% confidence.
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1 Introduction

On current trends, the most popular and valuable LBS applications are on the
smartphone [1–3]. Humans in modern society prefer carrying an almighty phone
to wearing one more piece of facility for positioning, which drives smartphone
indoor positioning as a kind of invisible rigid demand [4]. Various kinds of smart-
phone applications which the secondary development of LBS pose an urgent need
for high-precision indoor positioning [5, 6]. From opinions of Microsoft Indoor
Localization Competition and Indoor Positioning and Indoor Navigation (IPIN)
competition, acoustics and PDR are the best choices of indoor positioning in
smartphone. For the former competition, AID from Zhejiang University won the
first place with pure acoustics of 3D group [20], which was also the prototype
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system of this paper. For IPIN Track 3 and Track 4, Team WHU from Wuhan
University won the first place with PDR.

We propose Pals, High-Accuracy Pedestrian Localization with Fusion of S-
martphone Acoustics and PDR. Acoustics is outstanding for smartphone local-
ization [7–9]. All of smartphones on the market are equipped with sound devices.
So long as the speakers and microphones are suitably deployed, the demand of
acoustic signal positioning can be met. Inertial Measurement Unit (IMU) is
already integrated into smartphones for several years. Rough self-contained po-
sitioning can be achieved based only on them. IMU has little dependence on
the environment, except for the magnetometer. PDR positioning principle is de-
rived from the IMU reading integral, obtaining the displacement and orientation
angle, estimating the stride size, and then reckoning the coordinates [10].

Things do not always go as well as we thought. Even if acoustics and IMU
fusion simulation algorithm design is perfect, we still find oceans of obstacles in
practical application. So this paper focuses on practical problems. In general,
the main contributions of Pals are listed in the following three aspects:

Pals proposes a hybrid structure incorporating acoustic positioning coordi-
nates and PDR stride length. The structure is fast and suitable for most mobile
navigation scenarios.

Pals creates a empirical Extended Kalman Filter algorithm for fusion. We
update coordinate by modified observation estimation matrix rather than status
prediction matrix.

Pals improves PDR algorithm. We add speed-constraint to the pace event
judgment, and adjusting stride length estimation by fusion coordinate.

2 Related Works of Smartphone Indoor Positioning

Recent commercial trends in high-accuracy indoor localization have led to a
proliferation of studies. Chen [11] built a large number of fingerprint databas-
es using the strength of WiFi signal, realizing the commercialization of indoor
positioning in shopping malls and airports. [12] presented a smartphone inertial
sensor-based PDR approach for indoor localization and tracking with occasion-
al iBeacon calibration. Google Tango [13] estimated positioning with cameras.
But camera casually may make troubles with others in an age which privacy is
significant.

Acoustic localization enjoys a wide range of applications. BeepBeep [14] emit-
ted the double Beep sounds during a ranging session by Round-Trip Time (RTT).
In bi-directional communication mode of [14], user capacity is a major limitation.
BatTracker proposed for the superiority of the high precision and infrastructure-
free moblie device tracking system in 3D space [15]. They continuously emitted
acoustic signals that bounced off surfaces of nearby object. It limited positioning
range near the smooth wall. ALPS [16] in Carnegie Mellon University (CMU)
was very considerate in non-Line-of-Sight (NLOS) recognition, Doppler effect
and floor plan. [17] proposes an acoustic steering tracking system on smart-
phone.
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Inertial localization system is also a hot topic of infrastructure positioning
in academia. Considering the cost and Commercial Off-The-Shelf (COTS), the
smartphone inertial sensor is lightweight, so IMU localization only cannot main-
tain high-accuracy for long-term caused by accumulative errors. The accumula-
tive errors can also be efficiently removed by using Zero Velocity Update (ZUP-
T) [18], but IMU are required to be mounted on the foot in ZUPT. In practical
smartphone localization, all above methods are not suitable since the moblie is
supposed to be held in hand or in pocket rather than to be mounted on waist or
foot. Rui Z. [19] proposed a novel localization system fused the position infor-
mation estimated by acoustic and inertial sensors. They are the closest to our
structure design. We optimaize PDR of Pals with stride length feedback, fusion
algorithm is also improved with experiment.

3 Pals in Fusion

Pals fusion algorithm belongs to heterogeneous fusion. In practice, the data size
of PDR obtained is much larger than the acoustics, so Pals coordinates are
mostly given by PDR. Fusion occurs when mobile cache receives the acoustic
coordinates, or when mobile sensor detects that the pedestrian has stopped.

3.1 Hybrid structure incorporating acoustics and PDR

According to Extend Kalman Filter (EKF), we define the PDR algorithm as the
state transition of EKF as

Xk+1 = f(Xk) +wk+1, f(Xk) = Xk + SkukT, (1)

where Xk = [xk yk] is denoted horizontal and vertical coordinate when t = k at
indoor coordinate axis. Generally, there is a stationary deflexion in the horizontal
direction between the indoor coordinate system and the geodetic coordinate
system. The building is of course fixed, so the interior coordinate system is also
constant. In dealing with the coordinate deflexion of φ fixedly, we only need to

multiply by a constant rotation matrix T =

[
cosφ − sinφ
sinφ cosφ

]
, and Sk is denoted

stride length in k. uk = [sin θ cos θ]T is controller vector where θ is azimuth
angle. wk follows a normal distribution with zero mean and variance Qk.

Then XA is obtained from acoustics, we take it out of mobile cache. Then
observation model can be defined as

zk+1 = h(Xk+1) + vk+1, h(Xk+1) = J̄k+1Xk+1 + (1− J̄k+1)X
A
k+1, (2)

where J̄k+1 is normalization of cost function J(•) in MLE of TDOA in acoustic.
vk+1 follows a normal distribution with zero mean and variance Rk+1. In other
words, the observation model is weighted mean with noise.

Pals employs the time update equation of EKF are given as

Xk+1|k = f(Xk),Pk+1|k = Pk +Qk, (3)
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where Pk+1|k and Pk are a priori and a posteriori covariances. The update of
EKF are given as

Kk+1 = Pk+1|kHT
k+1(Hk+1Pk+1|kHT

k+1 +Rk+1)
−1, (4)

Xk+1 = zk+1|k +Kk+1(zk+1|k −Hk+1Xk+1|k), (5)

Pk+1 = (I−Kk+1Hk+1)Pk+1|k, (6)

where K is the Kalman gain, I is 2-order identity matrix. In conventional EKF,
(6) can be competent the update of variance.

At the end, the fusion position trace is displayed by 2-order Gaussian s-
moothing. Notice that (5) exerts the predicted zk+1|k of the measured values,
while formal EKF exerts the estimation of the state Xk+1|k values. This is the
third of originality in Pals system and is based on empirical inference. Smart-
phone sensors are consumer-level, not industrial-level. Our acoustic system is
more excellent by contrast. Thus Pals infers measurements matrix have a higher
probability of reliability over the state predictions.

3.2 Stride length update based on Pals coordinates

As mentioned in Section IV, Weinberg’s stride length estimation involves a spe-
cific parameter γ. Now in order to update γ, we push back stride length accord-
ing to the fusion coordinates. Assuming consecutive two-step model is (7) on the
basis of (1), the cost function of Sk is denoted as

Xk+1|k+1 = Xk|k + SkukT+wk+1, (7)

Js(Sk) = ‖Xk+1|k+1 −Xk|k − SkukT‖22. (8)

To minimize the cost function Ŝk = arg min
Sk∈R

Js(Sk), the stride length esti-

mation Ŝk must satisfy

Ŝk = [(ukT)T(ukT)]−1(ukT)(Xk+1|k+1 −Xk|k). (9)

Then γ is calculated as (10)

γ̂ = Ŝk/(|âk|max − |âk|min)
1
4 (10)

Through the above process, Pals accomplishes the specific parameters of the
Least Squares (LS) update γ. Generally speaking, γ is relatively stable for the
same person with the same posture, maybe no change in short-term. Once the
pedestrian posture has changed, such as from slow walking to fast walking or
running, γ will be changed correspondingly. Based on above inference, we update
γ value every five seconds.

4 Experiment and Analyze

Pals design pays more attention to user experience. In this section, we commit
plenty of experiments, operating by different people, different smartphones and
different experimental paths.
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4.1 Experimental setup

Fig. 1. Experimental environment. Path 1 in red is a straight line, while Path 2 in blue
deliberately follows a curve and goes around twice to test Pals’ extreme performance

Experiments are shown in the Fig. 1. We arrange the base station in the posi-
tion shown in Fig. 1, and all the positions are temporarily determined. All of base
stations can be synchronized via Bluetooth as they are developed by us manu-
ally. Set the coordinate origin in the left bottom, and follow the right-handed
rule to establish indoor coordinate. Then measure φ = 161.5◦ between indoor
coordinate system and the geodetic coordinate system. The rest of the details
are shown in Fig. 1. The ground truth positioning (GTP) of the experiments
were measured by WHU system. [21]

4.2 The implementation of experiment

Test phone is Huawei Mate 9. Tester is of medium height with standard body.
During the experiment, tester holds the smartphone, walks along the path in
ordinary posture and locates in real-time. The results of path are shown in Fig.
2. As can be seen, acoustic signals are of high accuracy. The reason is, acous-
tics always filters out jump points with overlarge MLE value J , and remaining
points are relatively ideal. However, this implementation and slow update rate
maybe lead to discontinuous trajectory. For experimental convenience, the initial
coordinate of PDR is as well provided by the acoustic system. The short-term
accuracy of PDR positioning is high precision, but even if the drift error of IMU
is calibrated, the long-term PDR algorithm still has significant cumulative error.

It takes 43 seconds to walk through Path 1, and 27 seconds to Path 2. The
PDR error in this paper is not constrained with other conditions, e.g. map, which
is completely within the tolerance range. The cumulative error of PDR rotation
estimation is more obviously reflected in Path 2, while the acoustic system is not
affected but the current environment elements. The fusion algorithm in Path 2
still shows strong stability.
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Fig. 2. Under different paths, separate acoustics, separate PDR and fusion algorithm
are compared. Path 1 on top left and Path 2 on top right. Cumulative error distributions
for paths. Path 1 on bottom left and Path 2 on bottom right.

From Fig. 2, it can also be seen that acoustic signal positioning error is
not worse than fusion algorithm in some data, but Pals is stronger in terms
of stability. The reason is that acoustics still remains some large error points,
which are more likely to appear near the walls. The acoustic cumulative is slightly
stronger than the Pals with a probability of about 50%, while about 75% in Path
2. In general, Pals algorithm can maintain within 95% of 0.28 meter error and
within 90% of 0.27 meter error, which is more robust than acoustic and PDR
positioning severally.

4.3 The analysis of Pals supplement approach

The experimental results shown in Fig. 3 include different approach. However,
stride length feedback update approach is necessary. The green small dot line
in Fig. 3 reflects the positioning performance without the approach. Compared
with Pals standard system, the mean error is down by about 9.7 centimeters. The
motion posture in our experiment is fortunately only normal walking steps. Pals
method will have more advantages if the walk/run switch is added. Cumulative
error distribution of the normal EKF with Xk+1|k are shown by carmine dash-
dotted line. The accuracy is about 10 centimeters lower than Pals.



Pals. 7

0 0.1 0.2 0.3 0.4 0.5 0.6
Error Distance (meters)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

E
rr

or
 D

is
tri

bu
tio

n

Pals with Joseph's Stabilized

Pals Standard

Pals without Step Feedback

EKF with (34)

Fig. 3. Cumulative error distributions with different approach.

5 Conclusion and Prospects

Pals, High-Accuracy Pedestrian Localization with Fusion of Smartphone Acous-
tics and PDR, is proposed in this paper. To further enhance the smartphone
indoor positioning accuracy, Pals compares (6) with routine improves EKF in
which combined with the characteristics of smartphone sensor and selected the
observation value as fusion update strategy. Pals also amends the stride length
of the individual state parameter γ according to fusion coordinates. The experi-
ments show that Pals system can achieve indoor error of 0.28 meter within 95%
confidence. Pals has been signed in 2022 Hangzhou Asian Games, as a security
personnel and tourists indoor positioning.

Of course, Pals has it drawbacks. In this paper, Pals only takes into account
the discrimination of motion or stillness when holding smartphone, and without
considering putting it in the pocket, which is applicable to the scenario of walking
follow the phone screen. We will combine the methods of deep learning and edge
computing [6] for next research.
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