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Abstract. Accurate estimation of the radio frequency maps is key in practical indoor local-
ization, but this requires dense sampling of the electromagnetic field, which is also known as
fingerprinting. To decrease the time-consuming fingerprinting process, we both aim to esti-
mate probabilistic radio frequency maps (RM) using artificial neural networks (ANN), and
automatically pick the most informative fingerprint positions following an active learning
strategy based on uncertainty sampling, aided by Gaussian Processes (GP). Once we have
an estimate of the RM of the environment, the problem can be formulated as a tracking
problem with a Hidden Markov Model (HMM), and the RM can be used as the observa-
tion densities of the HMM. The trajectories of sequential positions are approximated with
a sequential Monte Carlo filter. The results indicate that fingerprint measurements can be
reduced by 30% in return of 8.1% decrease in the localization performance.
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1 INTRODUCTION

Indoor localization has become a widespread research area recently due to the use cases of mar-
keting, healthcare [3] and asset tracking. Indoor localization approaches are divided into three
categories: geometry-based, propagation-based, and fingerprint-based. Geometry-based approaches
[5,10] uses triangulation or trilateration principles to calculate the position of the object. However,
they are not capable of modeling the multi-path and shadowing effects. The propagation-based
approaches model the attenuation of the signal power, but as environments vary, these approaches
require to model the power of the signals with different parameters for each environment. Recently,
fingerprint-based localization approaches has become common in this research area.

Fingerprint-based approaches have two stages. The first stage is the fingerprint collection at
specified positions in the environment. A fingerprint is a statistic of the signal strength at a co-
ordinate. It can be in the units of Received Signal Strength Indication (RSSI) or Signal-to-Noise
Ratio (SNR). The second stage is the position estimation based on the data driven fingerprints.
The number of collected fingerprints and the position estimation methodology are two important
factors that affect the localization accuracy. Accordingly, we analyze the studies using different
position estimation and fingerprint reduction methodologies.

One of the earliest fingerprint-based approach is RADAR [2]. They estimated the positions
using kNN using a previously created RM of WiFi of 2.94-meter and 1-meter resolutions. In order
to reduce the fingerprint measurement cost, they modeled the signal propagation with the Wall
Attenuation Model and calculated the fingerprints at the other positions in their test environment.
By using the calculated fingerprints with the nearest neighbor technique, they achieved 4.3-meter
localization accuracy.

In [1] and [16], they used RSSI values and Channel Impulse Response as inputs for the neural
network training for estimating the positions. Both achieved accuracies under 0.6 meters. Similarly,
in [17], they used Auto Encoders consisting of two deep neural networks functioning as encoder and
decoder and achieved 1.82-meter mean accuracy. In [13], they computed propagated signal power
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distributions for each position and stored them in a probabilistic RM. They used both maximum
likelihood estimation (MLE) and neural networks in localization stage and achieved 0.27-meter
and 1-meter positioning error respectively. In [14], they generated a magnetic field map with the
Gaussian Processes. They used Sequential Monte Carlo Method for the localization and achieved
a 4.87-meter median position accuracy.

In [7], they focus on fingerprint reduction by extracting the hidden structure and redundancy
of fingerprint matrices by using Singular Value Decomposition (SVD). The missing values were
imputed via the kNN algorithm. They recovered the original fingerprints from only 5% of the
collected data with an error rate less than 14%. In [9], they suggested an artificial fingerprint
generation method based on signal propagation model. They generated two different RMs with the
measured and the artificially generated fingerprints. They used the kNN approach to evaluate the
localization performance based on these maps. They reduced the positioning error by 63% with
the artificially generated fingerprints.

In this work, we hypothetize that both neighboring fingerprints and their coordinates are re-
lated to each other. Modeling these relations with Gaussian Processes (GP) and Artificial Neural
Networks (ANN), we propose a novel reduction strategy to be applied to any fingerprint-based
localization problem. Our reduction strategy combines two methods: ANNs are used to estimate
the RM of fingerprints in the positions where no fingerprint data is originally available, and GPs
are used to model the uncertainty of fingerprints. For evaluation, we compare the localization er-
ror with and without these methods. We approach our problem as a tracking problem based on
HMM and use SMC to approximate the original trajectory. We calculate the localization error by
comparing the estimated trajectory with the ground truth.

2 METHODOLOGY

2.1 Radio Frequency Map Estimation

The relationship between an RSSI distribution at a position and its 2D position coordinates is a
complex relationship, as it bases on the degenerative effects on signals, such as path loss, shadowing,
or even the architecture of the environment. ANNs are good at modeling complex relationships and
multi-class classification problems where the output layer represents a probability distribution.

Five different sets of input features, S;, are constructed with different combinations of the
following features: the distances between a BLE transmitter (i.e. beacon) and a bluetooth receiver
(i.e., dongle), fingerprints in the form of RSSI histograms on the neighboring positions and their
distances to the beacon. In Table 1, PT stands for the distance of the position to the beacon, PF;
for the distance of the position to the i*" closest fingerprint, TF; for the distance between the "
closest fingerprint and the beacon and H; for the histogram on the i*" closest fingerprint, with
indices for the rank of the proximity.

Table 1. Input Features

Feature Sets Features
S1 PT
S2 PF,,TF,, Hy
S3 PF, 2TF 2, Hi2
Sa PFi33,TF123,Hi23
Ss PT PFi1 234, TF1234,H1234

We train a Single Layer Neural Network (SNN) using these five feature sets. For every set we
select different number of units in the hidden layer ranging from 20 to 520. As an SNN may not be
successful enough to approximate the complex function between our input features and output, we
also train a Deep Neural Network (DNN) with two hidden layers. We feed the features to the input
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layers and we estimate the discrete probability distribution of RSSI values ranging from —100 to
—20.

We compare two distributions using a cross-bin comparison metric that is also called the squared
Earth Mover’s Distance (EMD?) [12]. It corresponds to the square sum of element-wise difference
between the cumulative distribution functions (CDF) of two distributions. In an ordered multi-class
classification problem it becomes equivalent to Mallow’s distance [8]:

EMD*(p, q) o< [|Fp(p) — Fo(q)ll3 (1)

where p and ¢ are original and predicted distributions respectively, and Fp(p) and Fg(g) are their
cumulative distribution functions.

For intermediate and top layers of ANNs, we select the sigmoid function as the activation
function to model complex relations of features. The weights and biases are initialized with the
Glorot Initializer and as zero respectively. Weights and bias values are optimized via the RMSProp
algorithm [6].

2.2 Active Learning with Gaussian Processes

We use GP to model the mapping functions between the positions and the fingerprints together
with the uncertainty in these positions. GP is composed of random variables, f, any finite set of
which have a joint Gaussian distribution. The positions and the RSSI values are the observations,
and the functions are the latent variables (see Fig. 1). When the functions for the given observations
are known, the function value, f,, for a new position, x,, can be calculated.
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Fig. 1. Graphical Model of Gaussian Process Regression [11]

We assume that the distances between the positions makes a difference in RSSI distributions.
We use a squared exponential function as the covariance function with the kernel k(x;,x;). The
hyper-parameters of the kernel, o¢, 0y, and [ are optimized with gradient ascent by maximizing
the log marginal likelihood as in [11]. Each function for each input value is treated as a random
variable and they have a joint Gaussian distribution.The predictive distribution of RSSI values is
computed as follows:

f*‘XMX,I',NN(M* 72*)
e = ) + K (0, 01K (x,%) + 021)7" (£ — m(x)) 2)
Yo = K (X, %) — K (%0, X)[K (%, %) + 021] " K (%, %)

where r and x are the RSSI observations and positions respectively. The function value can be
predicted only by calculating the correlation between existing positions and a new coordinate.
The output value r, differs from f, only in the sense that it has an additional noise term in its
covariance, X, + J%I .

Predictive variance, X, is used for iterative active fingerprint selection. In the initial step,
a random fingerprint is selected for training. At each step, the fingerprint that has the greatest
variance is added to the training set. Retraining with the newly added fingerprint, predictive
variance for each of the remaining positions is recalculated and this procedure continues until we
reach a target number of fingerprints.
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2.3 Tracking with Radio Frequency Map

We model the tracking problem as HMM, as in Fig. 2. Measurements, r;, are the RSSI values and
the latent variables, x;, are the positions. We are to estimate the current position, x;, given the
observations so far. Filtering, p(x¢,r1.¢), is a recursive process:

T

Fig. 2. Graphical Model for Tracking Problem

t
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For the transition density, p(x;—;+1|x¢—;), a diffusion-based motion model is used as explained
in [4]. For the observation densities, p(r|x;), we use the RM estimations, matrices that store the
conditional probabilities, p(r|x). When the latent variable space is too big and/or continuous, the
exact method will be intractable and/or impossible to apply. We employ an SMC method, the
particle (bootstrap) filter, to approximate the conditional marginal distribution, p(xt|ri.+). We
evaluate the final results by measuring the filtered trajectory of positions with the ground truth
trajectories (see [4] for details).

3 EXPERIMENTS AND RESULTS

We conducted our experiments on two different datasets, collected from two different areas, the
first of which, A;, is a living room (5.28 x 6.35 m?) containing six BLE beacons, logged at 50
positions each for 24 hours [4] (see Fig. 3a). The second area, As, is a home simulation environment
(10.40 x 5.95 m?) [15], with six beacons, logged at 50 positions each for 20 minutes. (see Fig. 3b).
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Fig. 3. Fingerprints are represented by black dots on two test areas.

We used 70% of these fingerprints for training, and the remaining for validation and test
purposes. The training data were used for optimizing the weights and biases, and the validation
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data for selecting the best model. The test data were used only for evaluating the localization
performance. All computations were performed on an Intel Core i7 based computer and 8GB of
RAM. The models were constructed on Keras 2.1.5 with Tensorflow as backend.

For the test area of A;, we trained the SNN with five feature sets (see Table 1) and 25 different
hidden unit sizes. We repeated the training process ten times, constructing ten different randomly
selected fingerprint configurations which are then used to compare the results of these feature sets.
We evaluate the performance by measuring the average validation loss over all beacons. Fig. 3
shows that S; yields much greater error than the remaining feature sets, meaning the estimations
that depend solely on the distance to the beacons perform very poorly. S; has the best performance
with minimum EMD? loss with 60 units in the hidden layer. It shows that the input feature with
the four nearest fingerprint data, their distances to the beacons, and their histograms performs
better than the other feature sets. We trained the DNN with hidden unit sizes ranging from 10 to
100. Finally, the configuration of S; and 40 units is the best architecture for each layer, as seen in
Fig. 3. Repeating the same experiments for the fingerprints collected in the As, we found that Ss
and 40 hidden units in the hidden layers performs better for both SNN and DNN (see Fig. 3).
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Fig. 4. Errors with respect to hidden unit sizes for two environments

To evaluate our strategy, we trained ANNs using (i) all collected fingerprints, (ii) randomly
selected 70% of the fingerprints and (iii) actively selected 70% of the fingerprints. With the trained
networks, we made estimations of dense RMs with 0.1-meter intervals for ten times.

We used the constructed maps as the observation distribution in the particle filter to estimate
the trajectory points. We applied the SMC with 2000 particles and at 400 trajectory points in A;
and As. In each run, the first 32 estimated points were omitted as burn-in period. We run the
filtering algorithm ten times for each radio frequency map and each time particles were initialized
randomly. This prevented us from getting poor performance because of the random initialization.
We reported the performance of our methodology as median tracking error instead of the mean
absolute error, because errors form skewed distributions, which are clearly non-Gaussian. Tracking
accuracies in A; and Ay are given in Fig. ba.

We have three observations. The first one is that deep neural networks cause higher median
error in both areas. Second one is when the training size is decreased from 100% to 70% of data,
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median error increases. Finally, the median error for the actively selected data in each test area is
lower than the one for the randomly selected data regardless of the neural network type.

As seen in Table 2, we can reduce the number of training data by 30% while increasing the
tracking accuracy by at most 8.1% in return. For A;, the resulting increase are 1.9% and 2.3% for
SNN and DNN, respectively. For A, the resulting increase are 8.1% and 3.96%.
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Fig. 5. Comparisons of neural network performances in both areas with different selection strategies. “All”
refers to the case when all collected fingerprints are used.

Table 2. Accuracy results of NNs in both areas. 50% corresponds to the second quartile (median) error
of positioning error distribution.

Aq As
NN type|Fingerprints|50% NN type|Fingerprints|50%
All 2.10 All 2.83
SNN Random |2.28 SNN Random |3.21
Active 2.14 Active 3.06
All 2.20 All 3.03
DNN Random 2.29 DNN Random 3.22
Active 2.25 Active 3.15

4 CONCLUSION

We propose a novel approach to reduce the training size required to estimate probabilistic radio
maps by picking training positions adaptively. We have two conclusions showing the success of our
approach. First, we pick the fingerprint positions in an adaptive manner, we estimate fingerprints
at remaining positions better than we do with the randomly selected fingerprints in both test areas.
Second, we reduced the training size by 30% with an increase in the median error by a maximum
of 8.1%. Since fingerprinting is a time-consuming procedure in indoor localization field, this study
would be used to reduce the fingerprinting process of any other study in the indoor localization
research area.
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