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Abstract. Received Signal Strength Indication (RSSI) fingerprinting is known 

as the most concerned method for indoor localization as its high accuracy and 

low cost. Numerous RSSI based methods have shown an attractive performance 

but the major drawback is the high dependency on the database construction. In 

this paper, we propose a localization method based on radial basis function 

(RBF) network. Choosing Gaussian radial basis functions with appropriate 

widths, the probability algorithm can be effectively conducted to the RBF net-

work regardless of deficiency of the RSSI data. By further conducting the su-

pervised learning of RBF network the RM database can be calibrated and up-

dated once some new dataset is available, so as to achieve a better localization 

performance. Experimental results in a multi-floors building verify that the per-

formance of the proposed RBF network is superior to other common used 

methods. 
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1 INTRODUCTION 

Location-Based Service (LBS) has been widely used in a variety of contexts, such as 

health, indoor object search, personal life, etc. Advances in smartphones have made it 

feasible to conduct positioning, tracking, navigation, and location-based security 

[1][2]. Global Navigation Satellite Systems (GNSS) is used widely in outdoor envi-

ronment for an optimal choice to achieve LBS, but the inability of these signals to 

penetrate buildings means other techniques must be explored for indoor positioning. 

Nowadays one of the most popular indoor positioning technologies is WLAN posi-

tioning, which is easy to implement on many mobile platforms to achieve a meter-

level localization accuracy. 

Algorithms for fingerprint-based localization include deterministic and probabilistic 

methods. Deterministic algorithms generally store the mean value of RSSI as the fea-

ture of RPs. It uses the similarity between online signal and database fingerprint to 

estimate the location of the user. Traditional deterministic methods could be easily 

implemented based on k nearest neighbors [3]. Some other more complex determinis-

tic algorithms such as support vector machine [4] and Deep Neural Networks (DNN) 

[5] show better localization accuracies with higher computational costs. However, due 

to the random fluctuation of RSSI in indoors measurement errors are inevitable what-

ever in offline or online phase, so only storing mean values of the RSSIs in the RM 
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cannot represent the whole RSSI distribution information at RPs. Therefore, probabil-

istic algorithms, such as Horus, usually record and store the RSSI distribution at each 

RP and use the probability distribution information for estimation [6]. 

However, the fingerprint-based localization still suffers from some defects. The first 

issue is the database insufficiency. Offline survey is usually a time-consuming pro-

cess, and for ordinary custom-grade applications, data collected at each RP could be 

extremely rare. In these circumstances, most probabilistic algorithms might be invalid 

since the requisite RSSI distribution characterization cannot be conducted without 

sufficient data. The second issue is the database deviation. The localizations for RPs 

in indoors are usually conducted by some type of low-accurate surveys. Also, the 

RSSIs from specific APs received at RPs usually fluctuate uncertainly due to the limi-

tations of low-cost sensors. Therefore, deviations on the RM construction are inevita-

ble generally. 

Response to these issues, we propose a localization method based radial basis func-

tion (RBF) network [7][8]. Considering the RPs as the basic units and the RSSI mean, 

variance, site location on each RP as the network parameters, it is a straightforward 

way to implement the RBF network to an indoor localization scene. Choosing Gaussi-

an radial basis functions with appropriate widths, the probability algorithm can be 

effective conducted by the RBF network regardless of deficiency of RSSI data. As the 

network and RM shares the same features. In addition, compared to other network 

such as the DNN, RBF network shows unique physical significance and has simplici-

ty structure as it exploits the radio map topology and the probabilistic model. General-

ly, with the proposed RBF network, the indoor localization accuracy and robustness 

would be improved effectively, since the error uncertainty of the RSSIs and RPs co-

ordinate are introduced on both RM construction and real-time localization proce-

dures.  

In this paper, in order to conduct a complete and precise localization in different in-

door scenarios, a parallel localization network by using the Gaussian radial basis 

functions was proposed. It is designed for both floor detection and location estima-

tion, where the floor detection was considered as a classification problem and the 

location estimation was treat as a regression one. In the offline phase, the radio map 

construction is the procedure of the network parameters initialization. In the online 

phase, when getting a RSSI measurement with an unknown location at an unknown 

floor, we use a complete parallel network to determine the floor and then to estimate 

the location within the floor. 

2 PROBABILISTIC LOCALIZATION MODEL 

By considering the distribution characteristics of the RSSI fingerprints on both offline 

and online phases, probabilistic algorithms can improve the system accuracy and 

stability, compared to most deterministic algorithms. Therefore, more advanced in-

door localization systems have been focusing on optimizing probabilistic algorithms. 

In this section, we discuss the probabilistic localization model from two aspects, floor 

detection in a building and location estimation on the determined floor. 
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2.1 Floor Detection 

Nowadays, floor detection becomes a necessity since multiple floors are quite com-

mon in buildings or other indoor/outdoor venues. In the indoor localization, the floor 

misjudgment usually introduces severer biases. Therefore it should be avoided first 

and foremost. In this subsection, we present a classification algorithm for floor detec-

tion. 

In the localization scenes, we assume that there are K reference points. In the offline 

phase, it generally stores the RSSI mean 𝝁𝑘 , 𝑘 = 1, … , 𝐾  and the RSSI variance 

𝚺𝑘 , 𝑘 = 1, … , 𝐾 from the k-th RP with the response location is 𝑳𝑘 , 𝑘 = 1, … , 𝐾. Each 

RP k belongs to a unique floor 𝐹𝑗, 𝑗 = 1, … , 𝐽. In the online phase, when get an RSSI 

vector X, we can deduce the unknow floor F by a classification. 

�̂� = argmax
𝐹𝑗

𝑃(𝐹𝑗|𝑿) (1) 

Where 𝑃(𝐹𝑗|𝑿) is the probability of the j-th floor under the condition of RSSI 𝑿. It 

can be obtained by 

𝑃(𝐹𝑗|𝑿) = ∑ 𝑃(𝐹𝑗, 𝑳𝑘|𝑿)

𝐾

𝑘=1

(2) 

As the probability of 𝑃(𝐹𝑗, 𝑳𝑘|𝑿) always equal to zero when 𝑘 ∉ 𝐹𝑗. Then we have 

𝑃(𝐹𝑗|𝑿) = ∑ 𝑃(𝐹𝑗, 𝑳𝑘|𝑿)

𝑘∈𝐹𝑗

(3)
 

By applying the Bayes theorem, the posterior probability 𝑃(𝐹𝑖 , 𝑳𝑘|𝑿) could be written 

as 

𝑃(𝐹𝑗, 𝑳𝑘|𝑿) =
𝑃(𝑿|𝐹𝑗, 𝑳𝑘)𝑃( 𝑳𝑘|𝐹𝑗)𝑃(𝐹𝑗)

𝑃(𝑿)
, 𝑘 ∈ 𝐹𝑗 (4) 

where 𝑃(𝐹𝑖) is the prior probability of the floor 𝐹𝑖. The uniform priors can be used 

here that introduce no bias toward any particular floor. Thus 𝐹𝑗 can be treated as a 

constant. 𝑃(𝑿) is the distribution of signal strength, which is independent with the 

location 𝑳𝑘 and floor 𝐹𝑗. It can also be treated as a normalizing constant. Assuming 𝐾𝑗 

is the number of RPs in the floor 𝐹𝑗, then 

𝑃( 𝑳𝑘|𝐹𝑗) =
1

𝐾𝑗

, 𝑘 ∈ 𝐹𝑗 (5) 

With respect to (5), Equation (4) can be simplified as 

𝑃(𝐹𝑗 , 𝑳𝑘|𝑿) ∝
1

𝐾𝑗

𝑃(𝑿|𝐹𝑗, 𝑳𝑘), 𝑘 ∈ 𝐹𝑗 (6) 

Combined with (3) and (6), the final expression of floor detection can be written as 

�̂� = argmax
𝐹𝑗

1

𝐾𝑗

∑ 𝑃(𝑿|𝐹𝑗, 𝑳𝑘)

𝑘∈𝐹𝑗

(7) 

Finally, we can calculate the probability for each floor 𝐹𝑗 separately, and choose the 

maximum one as the corresponding floor. 
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2.2 Location Estimation 

After floor detection, next step is to find the most likely location �̂� on the determined 

floor F. As we know, location is a continuous value while floors are always presented 

discretely. Therefore, instead of classification, regression is a better way to find a 

continuous solution. 

Let 𝑃(𝑳𝑘|𝑿, 𝐹) be the probability of the k-th RP location under the condition of RSSI 

𝑿 and a known floor F. it is easily to obtain the probable location as the weighted 

regression, as 

�̂� = ∑ 𝑳𝑘𝑃(𝑳𝑘|𝑿, 𝐹)

𝑘∈𝐹

(8) 

with 

∑ 𝑃(𝑳𝑘|𝑿, 𝐹)

𝑘∈𝐹

= 1 (9) 

where 𝑘 ∈ 𝐹 denote the k-th RP which belong to floor F. By applying the Bayes theo-

rem, we can then obtain the so-called posterior probability of the location 

𝑃(𝑳𝑘|𝑿, 𝐹) =
𝑃(𝑿|𝑳𝑘, 𝐹)𝑃(𝑳𝑘|𝐹)

𝑃(𝑿|𝐹)
, 𝑘 ∈ 𝐹 (10) 

where 𝑃(𝑳𝑘|𝐹) is the prior probability of the location 𝑳𝑘 on the floor F. For simplici-

ty we use only uniform priors here that introduce no bias toward any particular loca-

tion. 𝑃(𝑿|𝐹) is the distribution of signal strength, which is independent with the loca-

tion 𝑳𝑘 and can be treated as a constant. Equation (10) can be simplified as 

𝑃(𝑳𝑘|𝑿, 𝐹) ∝ 𝑃(𝑿|𝑳𝑘 , 𝐹), 𝑘 ∈ 𝐹 (11) 

with respect to (9), we can normalize (11) as 

𝑃(𝑳𝑘|𝑿, 𝐹) =
𝑃(𝑿|𝑳𝑘 , 𝐹)

∑ 𝑃(𝑿|𝑳𝑘 , 𝐹)𝑘∈𝐹

, 𝑘 ∈ 𝐹 (12) 

Therefore, the location �̂� can be calculated by the conditional probability of RSSI 

under location 𝑳𝑘 within a floor F. 

�̂� =
∑ 𝑳𝑘𝑃(𝑿|𝑳𝑘, 𝐹)𝑘∈𝐹

∑ 𝑃(𝑿|𝑳𝑘 , 𝐹)𝑘∈𝐹

(13) 

With above two procedures, the probability model of indoor localization has been 

theoretically constructed. However, practical application of the theory still faces fol-

lowing challenging issues: One is the deviation of the database. As the uncertainty 

of the RSSI fluctuation and the inaccuracy of the indoor localization measurements 

at RPs, database features would unavoidably deviate from the true values. The 

other one is the data insufficiency of the database. In most custom-grade indoor 

localization applications, collecting adequate RSSI measurements at each RP is actu-

ally impracticable since the offline survey usually covers a vast indoor area with 

complex layouts. Somewhere, RSSI data collected on some RPs could be extremely 

rare and inaccurate. As a result, localization by probabilistic algorithms could become 

invalid in practical applications. 
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3 RBF LOCALIZATION NETWORKS 

Response to above issues, we propose to combine the probabilistic localization model 

with the RBF network. As RBF network shows the characteristic of explicit physical 

significance and simplicity structure, the probabilistic algorithm based on RBF net-

work can be well implemented and improved in localization. 

3.1 Radial Basis Functions Network 

Historically, radial basis functions were introduced for the purpose of exact function 

interpolation. Given a set of input vectors {𝑿𝑖 ∈ ℝ𝑛 , 𝑖 = 1, 2, … , 𝑁} along with corre-

sponding target values {𝒅𝑖 ∈ ℝ𝑚, 𝑖 = 1, 2, … , 𝑁}, the goal is to find a smooth function 

𝑓(𝑥) that fits every target value exactly, so that 

𝑓(𝑿𝑖) = 𝒅𝑖 , 𝑖 = 1, 2, … , 𝑁 (14) 

The radial basis functions (RBF) technique consists of choosing a function F that has 

the form 

𝑓(𝑿) = ∑ 𝒘𝑘𝜑(‖𝑿 − 𝒄𝑘‖)

𝐾

𝑘=1

(15) 

where 𝜑(‖𝑿 − 𝒄𝑘‖) is the radial basis function of the k-th locally-tuned unit, and ‖∙‖ 

denotes a norm that is usually an Euclidean distance. The 𝒄𝑘 ∈ ℝ𝑚, 𝑘 = 1, … , 𝐾 is the 

center vector of the radial basis functions and the 𝒘𝑘 ∈ ℝ𝑚 , 𝑘 = 1, … , 𝐾 is the weight 

vector. 

There are some different kinds of radial basis 𝜑(𝑟) for different fields and the most 

commonly used is Gaussian functions 𝜑(𝑟) = exp(− 𝑟2 2𝜎2⁄ ). Henceforth, we focus 

on the use of a Gaussian function as the radial basis function 

𝜑(‖𝑿 − 𝒄𝑘‖) = exp (−
‖𝑿 − 𝒄𝑘‖2

2𝜎𝑘
2 ) (16) 

where 𝜎𝑘 is a measure of the width of the k-th Gaussian function with center 𝒄𝑘. We 

will discuss to apply the RBF network to the probabilistic localization in next subsec-

tion. 

3.2 Localization Network 

With the RBF theory, we construct a classification network to detect the floor where 

the user is and a regression network to estimate the user’s location at a known floor. 

In the offline phase, the radio map construction can be considered as the initialization 

of the RBF network parameters. In the online phase, when getting a RSSI measure-

ment with an unknown location at an unknown floor, we use a complete parallel net-

work to determine the floor and then to estimate the location. 

Floor Detection Network. It is easily to discover the connection between RBF net-

work and floor detection algorithm. If consider each RP as an independent unit of the 

network, and the mean of RSSI 𝝁𝑘 at k-th RP as the corresponding center vector, the 

conditional probability 𝑃(𝑿|𝑳𝑘, 𝐹), 𝑘 ∈ 𝐹 can be denoted by the radial basis function 

as 

𝑃(𝑿|𝑳𝑘, 𝐹) = 𝜑(‖𝑿 − 𝝁𝑘‖) (17) 
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When collecting an RSSI vector X, the floor classification function F(x) can be ob-

tained according to (7) 

𝑓(𝑿) = argmax
𝐹𝑗

1

𝐾𝑗

∑ 𝜑(‖𝑿 − 𝝁𝑘‖)

𝑘∈𝐹𝑗

(18) 

where 𝐾𝑗 is the RPs number on the floor 𝐹𝑗. Combined with (16), (17) and (18), the 

final expression of floor detection function 𝑓(𝑿) can be written as 

𝑓(𝑿) = argmax
𝐹𝑗

1

𝐾𝑗

∑ exp (−
‖𝑿 − 𝝁𝑘‖2

2𝜎𝑘
2 )

𝑘∈𝐹𝑗

(19) 

where 𝜎𝑘 is a measure of the width of the k-th Gaussian function with center 𝝁𝑘. For 

convenience, we can set a common width 𝜎 for all Gaussian unit, and then adjust the 

width to make the network achieve a higher performance. By this way we can obtain 

an approximate value of 𝜎 when the training data is insufficient to get the truth value. 

Location Estimation Network. Similarly, we can conduct the location estimation by 

RBF network. As the Gaussian function 𝜑(‖𝑿 − 𝝁𝑘‖)  denotes the probability of 

RSSI 𝑃(𝑿|𝑳𝑘 , 𝐹), 𝑘 ∈ 𝐹 , it is easily to obtain the probability of the locations 

𝑃(𝑳𝑘|𝑿, 𝐹) using a normalization technique as 

𝜙𝑘(𝑿, 𝐹) =
𝜑(‖𝑿 − 𝝁𝑘‖)

∑ 𝜑(‖𝑿 − 𝝁𝑘‖)𝑘∈𝐹

(20) 

with 

∑ 𝜙𝑘(𝑿, 𝐹)

𝑘∈𝐹

= 1 (21) 

Accordingly, the 𝜙𝑘(𝑿, 𝐹) denote the conditional probability of location 𝑳𝑘 under the 

RSSI measurement X on the floor F. When getting an RSSI vector X, if considering 

the RP location 𝑳𝑘 as the weight vector, the location estimation function 𝑓(𝑿) can be 

written as 

𝑓(𝑿) = ∑ 𝑳𝑘𝜙𝑘(𝑿, 𝐹)

𝑘∈𝐹

(22) 

Combined with (16), (20) and (22), the final location estimation function can be writ-

ten as 

𝑓(𝑿) = ∑

𝑳𝑘 exp (−
‖𝑿 − 𝝁𝑘‖2

2𝜎𝑘
2 )

∑ exp (−
‖𝑿 − 𝝁𝑘‖2

2𝜎𝑘
2 )𝑘∈𝐹𝑘∈𝐹

(23) 

where 𝜎𝑘 is a measure of the width of the k-th Gaussian function with center 𝝁𝑘. As 

the same, we can set a common width 𝜎 for all Gaussian unit, and then adjust the 

width to make the network achieve a higher performance. 

In the offline phase, we can initialize the parameters of RBF location network includ-

ing the unit center 𝝁𝑘, width 𝜎𝑘 and location 𝑳𝑘 through the RM construction. In the 

online phase, when getting a RSSI measurement with an unknown location at an un-

known floor, we make use of the RBF localization network to obtain a most probable 

solution. 
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4 EXPERIMENT 

In this section, we evaluate the performance of the proposed probabilistic localization 

based on RBF network by comparing it to other methods in a specific experiment. 

4.1 Experiment environment 

The dataset was collected in the Beijing APM Mall with 7 floors (50×250m for each 

floor). The training set consists of 8673 data collected at 2891 RPs. Validation set and 

test set collection was conducted in a few days later. Totally about 2220 data point 

were evenly distributed in the whole building. The true locations of these points are 

all measured by the total station. Given the high density and large number of RSSI 

observations, we were able to evaluate and compare the results of using different 

localization algorithms.  

4.2 Floor detection result 

The performances of the floor detection network by KNN [3] and RBF network are 

shown in Table 1. It indicates that the floor missed detection rates are different for 

different floors. The miss detection rates for the F3 and F5 floors are the much higher 

than other, around 2.7% and 1.0% respectively, and floor detection for locations at the 

F1, F2 and F6 floors are all succeed in this experiment. Generally, the overall success-

ful detection rate of two methods are all satisfactory. RBF network still shows a little 

superior to KNN due to the more complete probability model. 

Table 1. Floor missing rate on different floors 

Floors B1 F1 F2 F3 F4 F5 F6 Overall 

KNN(K=1) 0.2% 0% 0% 2.7% 0.4% 1.0% 0% 0.60% 

RBF network 0% 0% 0% 2.7% 0% 1.0% 0% 0.54% 

4.3 Location estimation result 

Table 2 shows the mean values of the localization errors at each floor by different 

methods, KNN (K=1), KNN (K=5) [3], SVM [4], DNN [5], and RBF network. The 

first four methods are commonly investigated in literatures and the last two are pro-

posed in this work. Generally, no matter what methods are used the localization accu-

racies at F1 and F2 are much higher than others, while the localization accuracies at 

F5 and F6 are the worst. Compared with other four methods, the RBF networks show 

obviously better performance at every floor. 

Table 2. Average error of several methods of location estimation (error in meters) 

Floors KNN(K=1) KNN(K=5) SVM DNN RBF network 

B1 11.19 9.29 10.69 9.59 8.56 

F1 7.66 6.27 7.26 6.45 6.06 

F2 8.97 7.67 8.57 7.83 7.74 

F3 11.16 9.83 10.89 9.84 9.64 

F4 11.50 9.58 11.09 10.04 9.60 

F5 13.67 12.93 13.08 13.23 12.09 

F6 13.87 11.30 13.21 11.86 10.05 
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5 CONCLUSION 

In this paper, we introduce the principle and algorithm of probabilistic localization in 

detail. We propose to combine the probabilistic localization model with the RBF net-

work, which shows explicit physical significance and has simplicity structure. In the 

offline phase, the radio map is firstly constructed by initially training the network. In 

the online phase, when obtaining a RSSI measurement, the floor identification and 

location estimation are carried out in order. 

We compared the performance of the proposed method with others popularly used 

indoor localization methods in a seven floors experimental environment. Analysis 

results show that RBF network has a satisfactory performance in terms of floor detec-

tion and position estimation. The advantages of the proposed method are analyzed and 

summarized as follow. Firstly, it provides an effective probabilistic approach that can 

be applied to deficient RSSI dataset. Secondly, by considering the error distribution 

better localization accuracy and higher robustness can be achieved. 
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