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Abstract. With the increasing demand for indoor positioning, VIO (visual inertial 
odometer) are receiving more and more attention due to the universality and conven-
ience of the camera. We found that the visual observation of VIO is more susceptible 
to the environment, and the error of observation results in the final positioning error. 
For this reason, we specifically analyzed the visual error source for different scenarios 
and use the short-time reliability of PDR（Pedestrian Dead Reckoning). PDR is used 
to assist in the monitoring of integrity of visual observations. 
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1 Introduction 

As people become more and more dependent on services of location, the need for 
more accurate indoor location services is becoming more and more urgent. So indoor 
positioning technologies based on various types of sensors (such as Wi-Fi[1], Blue-
tooth[2], cameras[3], inertial sensors[4], etc.) are rapidly developing. VO (visual 
odometer) are receiving more and more attention due to the universality and conven-
ience of the camera. However, a visual odometer that uses a camera is difficult to 
handle dynamic obstacles, inertial navigation can mitigate the effects of dynamic 
objects by receiving motion information. At the same time, the IMU (Inertial Meas-
urement Unit) can measure the angular velocity and acceleration that there is a signif-
icant drift in these measurements, which makes the pose obtained by the two times of 
integration of IMU very unreliable. The camera data can effectively estimate and 
correct drift caused by IMU. The VIO provides a reliable choice for indoor location 
services that based on the complementarity between the IMU and the camera. So 
camera and IMU have been used in many INS(Indoor  Navigation System)[5, 6] . 
According to their pose estimation methods, visual inertia odometers can be divided 
into two categories: the filter estimation method and the optimization-based estima-
tion method. Filter-based classic VIOs include MSCKF (Multi-State Constraint Kal-
man Filter)[7] and ROVIO (Robust Visual Inertial Odometry)[8], and the VIO based 
on optimization method is the VINS (Visual-Inertial State Estimator)[9]. The indoor 
                                                             
* Corresponding author. 
   lxzheng@xmu.edu.cn(Lingxiang Zheng) 



2 

positioning system that based on PDR only require the data of IMU. The system uses 
the physiological characteristics of pedestrian walking to estimate the pedestrian's 
trajectory by detecting the step size and stride frequency of pedestrian walking. The 
source of information for the VIO system is the binocular camera and the IMU, while 
the PDR has only one source of information is IMU. When using the VIO system for 
indoor pedestrian positioning experiments, they unable to obtain accurate visual ob-
servations in special environments (such as low light and light imbalance) which re-
sulting in large positioning errors. We analyzed the visual measurement part and posi-
tioning errors of VIO. And we proposed autonomous integrity monitoring of a vision 
based pedestrian dead reckoning system. Which the short-term reliability of PDR 
(Pedestrian Dead Reckoning)[10] is used to assist in the visual integrity detection of 
VIO systems.  

2 Background 

Visual inertial odometers are generally divided into fore-end and back-end. The 
fore-end mainly deals with sensor’s observations, such as feature extraction and 
integration of images with IMU data. The back-end mainly processes the residuals 
caused by the observations through a filter or an optimization scheme, and obtains an 
optimal position state. The structural block diagram of the system is shown in Fig.1. 

 
Fig. 1. The full pipeline of VIO 
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where f  represents a collection of all feature points, 1 2,C C  are represent the left and 
right cameras respectively, and in  is the 2 1´  image noise vector. The feature position 
expressed in the camera frame, C ip ,is given by: 
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where G ip  is the 3D feature position in the global frame, G Cp  is the camera in the 

global frame and ( )iC

G qC  is the rotation matrix between the camera frame and the 

global frame. Once the estimate of the feature position is obtained, we can compute the 
measurement residual: 
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where CH and iH  are the Jacobians of the measurement iz  with respect to the state and 
the position estimate of feature. With all the sets of measurement equations formed by 
the feature points, we can get the optimal solution by minimizing the error and get the 
optimal position estimate.  

3 Visual error analysis & Autonomous integrity monitor 

3.1 Visual error analysis 

We found that the system has a large error in the positioning results obtained under 
special environments during the experiment. So we analyzed the error source and 
divided it into the following four error situations. 

Insufficient features. Commonly used feature extraction algorithms include SIFT[11], 
SUFT[12], FAST[13], ORB[14] and other feature extraction algorithms. And those 
feature extraction algorithm is often used in processing of VIO projects. In fact, it can 
be derived from the definition that it is desirable to find a point with strong contrast 
with surrounding pixels as a feature point. The contrast of point P can be expressed as  

 ( ) ( ) ( ) ( ) 2 2 2 2V , , , V , 2x y x yx y I x x y y I x y x y I x I y I I x yé ù= + + - × + × + ×ë ûå å! ! " ! ! ! !，
 (4) 

The value of V mainly depends on the gradient value of the point P  in the x and y 
directions. The larger the gradient value, the easier it is to be detected by the detector. 
Scenes with less texture (white wall) and low light in the indoor environment are very 
common, so that the detector could not detect enough feature points. Position 
estimation can be performed when the feature point pairs exceed 9 pairs. 
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When the number of feature points is sufficient, ( )rank 9³H  ,the constraint equation is 
sufficient to obtain the optimal solution. When the number of feature points is 
insufficient, the constraint condition is insufficient, and the obtained X error is large. 
This leads to an increase in positioning error. 
Lighting causes the failure of feature tracking. Light changes often occur in indoor 
environments and we use the Lambertian model as the lighting model. 

 ( ) ( ) ( ), , , TI x y x y h x y Sr= × ×   (6) 

Where ( )I ,x y  is the image gray value, ( ),x yr  is the object reflectivity, ( ),h x y  is the 
surface normal vector and S is the light intensity. We found that feature tracking is easy 
to lose leads to inaccurate positioning during light changing. The assumption of the 
optical flow method assumes that the gray level is unchanged. Substitute the lighting 
formula: 
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Where xI  and yI  are the gradient values of the feature points in the x and y directions, 
respectively, µ and n are the velocity of the motion in the x and y directions 
representing the feature points. When the light intensity changes, the residual of the 
feature points caused by the illumination change can be expressed as 
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Uneven distribution of features. It can be seen in the observation equation of the 
image that the presence of noise causes positional errors in the feature points in the 
image. The position error of the feature points will affect the state estimation of the 
camera when calculating the re-projection error. We describe the quality of the position 
estimate based on the camera state's Jacobian matrix of feature points iH  . In our model, 
the measurement error is zero-average, so the positioning error is also zero-average, so 
we can obtain the expected value and covariance of the error in the position calculation. 
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The amount of change in the position error in the x y， and z directions is represented 
by 2 2 2, ,x y zs s s  respectively. Use iiH  to represent the first element on the diagonal in the 

diagonal matrix ( ) 1T
i i

-
H H  . Then can be expressed as 
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Moving feature point. All moving objects such as pedestrians or vehicles will affect 
the positioning result when we positioning. When the feature points of the camera are 
concentrated on the moving object and the relative movement of the feature points is 
relatively large, the calculated camera movement is also too large. That is to say, the 
world coordinates of the feature points have an additional motion shift, which affects 
the camera's observation. Let's analyze the residuals generated by the offset of the 
feature. 

 ( )( )
+

1+ +
( )

+

i

ii

j j i

i

C
j C

CC G G G i
j f f C iG C C CC

i i iiC
j

X x
xXzY y q
yZ Z z Z zY

Z z

é ù
é ùê ú é ù

= - ® = -ê úê ú ê ú+ + ë ûë ûê ú
ë û

C p p p r
!

!!
! !

!! !
!

 (11) 

Autonomous integrity monitoring 

The error bound of PDR. Although PDR has a problem of cumulative error, the error 
in a short time is very small. Now assume that there are two sampling points 1 2,O O  , the 
sampling interval is tD  and the velocity of time 1O is v , the displacement is s  , and the 

state covariance matrix is 11 12
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.Accelerometer observations can cause inac-

curate deviations due to shocks generated during motion. We first analyze the one-
dimensional motion, the acceleration at time 1O is mea truef f fd= +  .An estimated value 
of the state quantity at 2O  can be obtained from the state quantity at 1O . The deviation 
caused by fd is: 
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Where R is the covariance matrix of the observed noise. 
PDR-assisted visual integrity monitoring. Hypothesis deviation obeys Gaussian 
distribution ( )0,N åe ! . Now e is a three-dimensional vector. In order to facilitate the 
calculation, the inner product of the computation vector is transformed into a scalar . 
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It can be thought of as the sum of the squares of two independent random variables 
subject to the standard normal distribution, which obeys the chi-square distribution of 
three degrees of freedom. The probability distribution (cumulative distribution 
function) is ( )F xa = , and given a a , we can determine an interval ( )10,F a-é ùë û , and

( )1F a- is the threshold we are looking for to determine the visual integrity. 
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4 Experimental & Evaluation 

Insufficient features. As shown in Fig.2(a), We changed the feature point extrac-
tion threshold for the same set of data, and the control variable is the number of fea-
tures per frame. Moreover, the number of feature points is 0 at the 1560-th frame, 
because the white wall is encountered and the feature points cannot be extracted. We 
draw the corresponding positioning trajectory. As shown in Fig.2(b). When the fea-
ture points are scarce, the camera's ability to correct the IMU is not strong, the path is 
not serrated enough, and the trajectory also shows significant deviations between the 
x-axis and the y-axis.  

	
Fig. 2. (a)Red is the number of features with the threshold is 20 per frame, and green is the 
number of sparse features with the threshold is 60 per frame. (b) The red cross mark is the 
starting point, the point A is the end point of the track in the original state of the feature point, 
and the point B is the end point of the track in the sparse state of the feature point. 

Lighting causes the failure of feature tracking. When the light is different from the 
left and right cameras, the average gray value of the images acquired by the left and 
right cameras is different, and the matching rate is low. The Fig.3(a) is a feature point 
distribution map obtained by FAST feature extraction on the images acquired by the 
left and right cameras. However, the image matching rate of the left and right cameras 
is not high, and the matching ratio is only 0.55. No feature points exist in the image 
after stereo matching. If the feature detection module does not have the feature point 
data output, the visual inertia mileage calculation method cannot perform the posture 
update, resulting in the track accumulating offset, and serious errors may occur. As 
shown in Fig.3(b). 

 

Fig. 3. (a) The average gray value of the top image is 97.0845, the average gray value of the 
bottom image is 183.946, and the number of features extracted by the top image is 946. The 
number of features extracted by the bottom image is 1543. (b) A long line pointed by the red 
arrow is that the different light of the left and right cameras results in no feature points 
and serious deviation of the trajectory 
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Uneven distribution of features. We use the distribution of feature points as variables 
and compare the trajectory with the original feature distribution. As shown in Fig.4(a). 
However, when the feature points are only distributed in the red area, the movement 
trajectory of the feature points is directed to the right side of the image. As shown in 
Fig.4(b),  it can be seen that the trajectory of the feature with uneven distribution has 
obvious deviation to the left. 

 

Fig. 4. (a) The feature point distribution is controlled in the red area. The yellow circle repre-
sents all the extracted feature points, and the blue line segment represents the tracking track of 
the feature points. (b) The red cross mark is the starting point, the C point is the end point of the 
track where the feature point distribution is normal, and D is the track end point where the 
feature point is unevenly distributed. 

Moving feature point. The pedestrians pass in front of the camera, and the contrast 
track is drawn as shown in Fig.5(b). It is obvious in the circle that the green track is 
shifted to the left because of the influence of pedestrians. We analyzed the details of 
this moment. As can be seen from Fig.5(a), when the pedestrian moves, more than half 
of the extracted feature points are gathered on the pedestrian. Therefore, the movement 
of pedestrian relative to the camera will lead to the deviation of the positioning results. 

 

Fig. 5. (a) Open circles represent moving feature points, solid circles represent stationary fea-
ture points. (b)The red cross is marked as the starting point and the E point is the original track. 
End point, F is the end point of the trajectory affected by the moving feature points. 

5 Conclusion 

In this paper, we analyzed the influences of visual measurements based on the po-
sitioning error of the system of visual inertial odometer, and analyzed the source of its 
positioning error. We divided the error sources of visual measurement into four cases 
and we have confirmed the influence of four error sources by experiments. Through 
the error analysis of PDR, it is found that the error of PDR in a short time is small and 
bounded. According to that characteristics of PDR, it is used to assist in the detection 
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of visual errors. When the above four cases of visual errors are detected, the position-
ing result will be corrected.  
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