
SAVE/GTS-VLT: Visual Logic Tool for Geo-Temporal

Specification and Verification of Safety Requirements in

Smart IoT Systems

Sunghyun Lee and Moonkun Lee

Chonbuk National University

567 Baekje-daero Deokjin-gu

Jeonju-si Jeonbuk 54896, Republic of Korea
moonkun@jbnu.ac.kr

Abstract. Visual representation for operational requirements for Smart IoT

Systems is desirable in process algebra, since it is more intuitive than textual

representation. Further visual representation for safety requirements in the sys-

tems is more desirable in real-time logic since it reduces the complexity of veri-

fication of the requirements. However it is not well known that there are com-

mon logics for such visualization. In that purpose, this paper presents a visual

logic, called GTS Visual Logic, to specify and verify the geo-temporal safety

requirements for Smart IoT Systems specified with a process algebra, called dT-

Calculus. The calculus is used to specify the operational requirements for the

systems on some conceptual geographical space. Once they are specified, a set

of simulations can be performed to construct all possible execution cases for the

requirements, and a set of outputs are produced in terms of processes, their ac-

tions and interactions, and dependencies on the 2-dimentional geo-temporal

space. Then the visual logic is used to specify and verify all the safety require-

ments for the systems in terms of dependencies, especially precedencies and

conditions, among all the processes, their independent actions and synchronous

interactions. For feasibility, a tool, called GTS-VLT, was developed on ADOxx

as a basic component of the SAVE tool suite, which is the tool set to model

Smart IoT Systems, in order to demonstrate the feasibility of the logic.

Keywords: GTS Visual Logic, dT-Calculus, process algebra, SAVE, VG-GTS,

ADOxx

1 Introduction

One of the main objectives of Industry 4.0 may rely on Smart IoT Systems for auto-

mation with AI and Big Data [1], and process algebra may be considered to be one of

the most suitable formal methods to model the systems because of their capability of

representing each IoT and its behavior as a process and its actions or interactions [2].

Further process algebras are good for visualization of IoTs and their behaviors on

some geographical space, since visual representation is more intuitive than textual

representation [3]. There are some of process algebras that provide with the capability

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

14

of visual specification of operational requirements of the IoT systems [4][5][6], but

there are only few formal methods that provide with the capability of visual specifica-

tion of safety requirements of the IoT systems [7].

Note that, in general, the requirements for the IoT systems can be classified into two

types of requirements: 1) operation and 2) safety requirements. Mostly the operation

or operational requirements are specified with process algebra, and the safety re-

quirements are specified with logic, especially, first-order logic [8].

Fig. 1. A Dual Approach for Visualization of Requirements of IoT Systems

This paper presents an approach for visualization of safety requirements of the IoT

systems with a visual logic, called GTS Visual Logic (GTS-VL), as shown in Fig. 1:

1) Firstly, operational requirements for the systems are specified with a process

algebra, called dT-Calculus, with visualization capability, on some conceptual

geographical space, shown in Step 1 of the figure.

2) Secondly, a set of simulations can be performed for all the possible execution

cases of the operational requirements, and a set of output results are produced,

which includes a set of processes, their actions and interactions, and dependen-

cies in simulation time, represented on the 2-dimentional geo-temporal space

(GTS), shown in Step 2 of the figure.

3) Thirdly, safety requirements for the systems are specified with GTS-VL with

visualization capability on GTS, shown in Step 3 of the figure.

4) Finally, the safety requirements are verified with visual logic rules on the GTS

with the requirements.

Note that GTS-VL is a first-order logic to represent all the processes, their independ-

ent actions and synchronous interactions, and, especially, dependencies among pro-

cesses, actions and dependencies, visually on the space. It can reduce drastically the

complexity of derivation and reduction steps of verification for the requirements over

their textual representation. Note that the definition of the textual logic has been re-

ported in [9].

In order to demonstrate the feasibility and applicability of the logic for the IoT sys-

tems, a tool, called GTS-VLT, has been developed on ADOxx as a basic component

15

of the SAVE tool suite, which is the tool set to model Smart IoT Systems. Fig. 2

shows the snapshot of the tool for visual verification of two simple safety require-

ments for an example. As noted in the figure, one of the main objectives of the visual-

ization in the tool is WYSWYG: What You See is What You Get. The approach with

the tool can be considered as one of the most innovative visual tools for visual speci-

fication and verification of the safety requirements for the IoT systems.

The paper is organized as follows. The visual definition of GTS-VL is described in

Section 2. The GTS-VLT will be demonstrated with a simple example in Section 3.

The method will be compared with other textual methods in Section 4. The SAVE

tool set [5] will be briefly introduced in Section 5. Finally, conclusions and future

research will be discussed in Section 6.

Fig. 2 Conceptual Entities in GTS-VL with an Example.

2 GTS Visual Logic

2.1 Geo-Temporal Space

GTS Visual Logic (GTS-VL) is a first-order logic defined in [9]. In the definition,

System is defined as 𝑆 = (𝑃, 𝐼, 𝐶), where 𝑃, 𝐼, 𝐶 are sets of processes, inclusion rela-

tions, and channels, respectively. Note that each P is defined as a sequence of timed

actions defined in Fig. 3 [7]. Among the actions, communication and movement ac-

tions are synchronous interactions among processes as follows:

1) Send/Receive: Communication between processes, exchanging a message by a

channel r.

2) Movement request: Requests for movement. p and k represent priority and key,

respectively.

3) Movement permission: Permissions for movement.

Note that timed action is an action with temporal properties of [r, to, e, d], where each

represents ready time, timeout, execution time, and deadline, respectively. p and n are

properties for periodic action or processes: p for period and n for the number of repe-

16

tition.

Fig. 3 Syntax of dT-Calculus

Fig. 4 Visual Definition of GTS with its Components

When a system is executed in a specific space in time, the system generates all the

traces with the actions and interactions of the processes in the systems. These traces

can be represented in its GTS as shown in Fig. 4. It consists of two dimensions: one

for the geographical, and another for the temporal. There are three difference types of

blocks: System Block (S), Process Block (P) and Action Block (A). By definition, a

system contains processes, and a process contains actions. Further an interaction is

represented as an Interaction Block (I) between two synchronous Action blocks of

two different Processes.

2.2 Dependencies for Safety Requirements

Mostly the safety requirements imply the dependencies among processes, actions, and

interaction block in GTS, with some additional conditions and predicates. Fig. 5

17

shows some of predicates in GTS Logic with visual representation on GTS. The tem-

poral and geographical relations among action blocks are visually defined in Fig. 6

and 7. Note that each Ai implies Action Block, and tj does of the temporal properties

for the block defined in the previous section. All the detailed definitions of the spatial

and temporal relations and the predicates are reported in the [9].

Fig. 5 Predicates for Dependencies among GTS Blocks

Fig. 6 Visual Representation for Spatial Relations

Fig. 7 Visual Representation for Temporal Relations

18

3 PBC Example

This section demonstrates the applicability of GTS-VL to the IoT systems with a sim-

ple example, known as Producer-Buffer-Consumer (PBC).

3.1 Requirements

There are two types of requirements for the PBC example:

1) Operational Requirements:

• Producer produces two resources, R1 and R2.

• Producer stores the resources in Buffer in sequence.

• Producer informs Buffer of the order of R1 and R2, or R2 and R1.

• Consumer consumes the resources from Buffer in order.

• The sequence of the consumption is informed to Buffer by Consumer.

2) Secure Requirements

• The sequence should not be violated, since the first resource contains

security information to decode the second resource.

• The propagation between the first and the second should be less than 30

seconds.

• The resources produced by Producer should be consumed by Consumer

less than 5 minutes.

𝑃𝐵𝐶 = 𝑃[𝑅1 ∥ 𝑅2] ∥ 𝐵 ∥ 𝐶

𝑃 = (𝑃𝐵(𝑆𝑒𝑛𝑑 𝑅1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 𝑝𝑢𝑡 𝑅1. 𝑝𝑢𝑡 𝑅2 + 𝑃𝐵(𝑆𝑒𝑛𝑑 𝑅2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 𝑝𝑢𝑡 𝑅2. 𝑝𝑢𝑡 𝑅1). 𝑒𝑥𝑖𝑡

𝐵 = (𝑃𝐵(𝑆𝑒𝑛𝑑 𝑅1). 𝑔𝑒𝑡 𝑅1. 𝑔𝑒𝑡 𝑅2 + 𝑃𝐵(𝑆𝑒𝑛𝑑 𝑅2). 𝑔𝑒𝑡 𝑅2. 𝑔𝑒𝑡 𝑅1). 𝑝𝑢𝑡 𝑅1. 𝑝𝑢𝑡 𝑅2. 𝑒𝑥𝑖𝑡

𝐶 = 𝑔𝑒𝑡 𝑅1. 𝑔𝑒𝑡 𝑅2. 𝑒𝑥𝑖𝑡

𝑅1 = 𝑃 𝑝𝑢𝑡. 𝐵 𝑔𝑒𝑡. 𝐵 𝑝𝑢𝑡. 𝐶 𝑔𝑒𝑡. 𝑒𝑥𝑖𝑡

𝑅2 = 𝑃 𝑝𝑢𝑡. 𝐵 𝑔𝑒𝑡. 𝐵 𝑝𝑢𝑡. 𝐶 𝑔𝑒𝑡. 𝑒𝑥𝑖𝑡

Fig. 8 Specification of the PBC Example in the Textual dT-Calculus.

3.2 dT-Calculus for Visualization

Fig. 8 shows the source code for the PBC example in the textual dT-Calculus, e-

specifically for the operational requirements. The basic descriptions are as follows:

1) As shown in the code, there are three processes in the system BPC: P, B and C.

2) And there are two resource processes defined in P as child process: R1 and R2.

3) There are two channels:

i. PB: a communication channel between P and B.

ii. CB: a communication channel between C and B.

4) The PBC System operates as follows:

i. PB contacts with B through PB, nondeterministically, that is, with a choice

operation (+), in order to send the resource in the sequence of R1 followed

by R2, or of R2 followed by R1.

ii. Once the sequence is determined by the choice, P releases the resources in

that sequence off the boundary of P, synchronously, with the synchronous

passive movement operations between P and R, that is, the put R of P and

the P put of R.

19

iii. Once the resources are released off P by P, B gets the resource in B in that

sequence of the release, synchronously, with the synchronous passive

movement operations between B and R, that is, the get R of B and the B get

of R.

iv. Once the resources are moved into B by B, B releases the resource off B in

the sequence R1 followed by R2, synchronously, with the synchronous pas-

sive movement operations between B and R, that is, the put R of B and the

B put of R.

v. Once the resources are released off B by B, C gets the resource in C in the

sequence of the release, synchronously, with the synchronous passive

movement operations between C and R :the get R of C and the C get of R.

Fig. 9 The ITS Views of the PBC Example

Fig. 10 The ITL View of the PBC Example

There are two forms of visualization for the example as follows:

1) ITS (In-The-Small) View: It is a process view to visualize the above descrip-

tion in 4). A set of the views for all the processes in the example is shown in

Fig. 9.

2) ITL (In-The-Large) View: It is a system view to visualize the above descrip-

tion between 1) and 3). The view for the example is shown in Fig. 10.

20

Note that the views in the figures are the snapshots of the example for visual specifi-

cation of the example with the tool developed by authors, namely, SAVE/GTS-VLT,

on the ADOxx Meta-Modeling Platform. There are two ways of specifying the re-

quirements in dT-Calculus:

1) Textual specification: The specification can be input to SAVE just as shown in

Fig. 8, and ITL and ITS views are automatically generated by SAVE.

2) Visual specification: The requirements can be directly specified in the graph-

ical editor for ITL and ITS views in SAVE.

Once the specification is done, SAVE generates all the possible execution paths of the

system. Fig. 11 shows that there are four possible paths in the PBC example: One for

the sequence of R1 and R2, another for that of R2and R1, and two deadlock cases.

3.3 GTS Visual Logic and Safety Requirements

Fig. 12 shows the simulation output of the first path for the execution paths of the

example shown from Fig. 11. All the elements of the GTS blocks are shown in the

figure: System, Process and Action Blocks. Further Interactions are shown in the edg-

es between two synchronous action blocks, as follows:

• τ: Communication

▫ 𝜏1 = (𝑃: 𝑃𝐵, (𝑆𝑒𝑛𝑑 𝑅1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), 𝐵: 𝑃𝐵(𝑆𝑒𝑛𝑑 𝑅1))

▫ 𝜏2 = (𝑃: 𝑃𝐵, (𝑆𝑒𝑛𝑑 𝑅2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), 𝐵: 𝑃𝐵(𝑆𝑒𝑛𝑑 𝑅2))

• δ: Movements
▫ 𝛿1,1 = (𝑃: 𝑝𝑢𝑡 𝑅1,𝑅1:𝑃 𝑝𝑢𝑡) 𝛿1,2 = (𝑃: 𝑝𝑢𝑡 𝑅2,𝑅2: 𝑃 𝑝𝑢𝑡)

▫ 𝛿2,1 = (𝐵: 𝑔𝑒𝑡 𝑅1,𝑅1: 𝐵 𝑔𝑒𝑡) 𝛿2,2 = (𝐵: 𝑔𝑒𝑡 𝑅2,𝑅2: 𝑃 𝑔𝑒𝑡)

▫ 𝛿3,1 = (𝐵: 𝑝𝑢𝑡 𝑅1,𝑅1: 𝐵 𝑝𝑢𝑡) 𝛿3,2 = (𝐵: 𝑝𝑢𝑡 𝑅2,𝑅2: 𝐵 𝑝𝑢𝑡)

▫ 𝛿4,1 = (𝐶: 𝑔𝑒𝑡 𝑅1,𝑅1: 𝐶 𝑔𝑒𝑡) 𝛿4,2 = (𝐶: 𝑔𝑒𝑡 𝑅2,𝑅2: 𝐶 𝑔𝑒𝑡)

The figure also shows a couple of the safety requirements for the PBC example from

Section 3.1. Note that the requirement edges are of the predicates shown in Fig. 5.

The whole requirements are as follows:

• 𝑅𝑞1 = 𝜏1 → ∀𝑖: (𝛿𝑖,1 < 𝛿𝑖,2) [𝑖 = 1,2] : After 𝜏1, that is, the communication for

exchange of the resources in the sequence of R1 and R2, all the movements ac-

tions of the resources, that is, 𝛿𝑖,𝑗, must follow that sequence.

• 𝑅𝑞2 = 𝜏2 → ∀𝑖: (𝛿𝑖,2 < 𝛿𝑖,2) [𝑖 = 1,2] : Similarly, After 𝜏2, that is, the communi-

cation for exchange of the resources in the sequence of R2 and R1, all the

movements actions of the resources, that is, 𝛿𝑖,𝑗, must follow that sequence.

• 𝑅𝑞3 = 𝜏1 ∨ 𝜏2 < 𝛿1,1 ∧ 𝛿1,2: After 𝜏1 or 𝜏2, that is, the sequence of R1 and R2 is

determined between P and B, both resources can be moved from P to B.

• 𝑅𝑞4 = 𝛿1,1 < 𝐵: (𝑔𝑒𝑡 𝑅1) : Once R1 is moved off P by P, B can get it into B.

• 𝑅𝑞5 = 𝛿1,2 < 𝐵: (𝑔𝑒𝑡 𝑅2) : Once R2 is moved off P by P, B can get it into B.

• 𝑅𝑞6 = 𝛿2,1 < 𝐵: (𝑝𝑢𝑡 𝑅1) : Once R1 is moved into B by B, B can put it off B.

• 𝑅𝑞7 = 𝛿2,2 < 𝐵: (𝑝𝑢𝑡 𝑅2) : Once R2 is moved into B by B, B can put it off B.

• 𝑅𝑞8 = 𝛿3,1 < 𝐶: (𝑔𝑒𝑡 𝑅1) : Once R1 is moved off B by B, C can get it into C.

• 𝑅𝑞9 = 𝛿3,2 < 𝐶: (𝑔𝑒𝑡 𝑅2) : Once R2 is moved off B by B, C can get it into C.

21

Fig. 11 Execution Paths Fig. 12 Simulation Output on GTS

Note that the results of the verification of the requirements are automatically visual-

ized in the figure as follows:

• Blue: A requirement edge in the figure is blue if it is satisfied.

• Red: A requirement edge in the figure is blue if it is not satisfied.

In case that a requirement is failed, the cause of the failure is listed in the workspace

of the tool, which is the bottom section of the window of the tool in the figure

4 Comparative Analysis

GTS-VL is a first-order logic deal with space and time for dT-Calculus. Compared

with other geo-temporal logics, it has some of advantages over them as follows:

• Temporal-based logics: Linear Temporal Logic (LTL)[10], Computational Tree

Logic (CTL)[11], and Real-time Logic (RTL)[12].

◦ LTL is a logic that can be used to analyze one time branch.

◦ LTL uses time operators like always, eventually and release to represent time.

◦ CTL is a logic that can be used to analyze multiple time branches.

◦ CTL uses time operators like all, exist, next, globally to represent multiple

branch times.

◦ RTL specifies a system using actions and events.

◦ RTL represents the time using formulas and operators (time, stop, state vari-

able transitions, external events and global time).

22

• Disadvantages over GTS-VL:

◦ These temporal-based logics have limitations to represent movements.

◦ No visual capability to represent graphically specification and verification of

systems because they are based on text representation.

• Spatial-based logics: Region and Connection calculus (RCC)[13] and Cardinal

Direction Relations (CRD)[14].

◦ RCC is a spatial logic that distinguishes each space by defining a relationship

between each space.

◦ CRD is a spatial logic based on coordinate system, and it is spatial logic that

distinguishes each space according to coordinates.

• Disadvantages over GTS-VL:

◦ The space of a process can be represented visually, but its mobility is not.

◦ No visual capability to represent temporal properties of processes in specifi-

cation and analysis of systems because they are based on textual representa-

tion only.

Fig. 13 Complexity Analysis for GTS-VL Requirements to Its Textual Form

Table 1 Reduction of Complexity from the Textual to the Visual

In order to demonstrate the advantages of the GTS-VL approach, we analyze the

complexity of the analysis and verification process for GTS-VL to its textual repre-

sentation. Fig. 13 shows the first requirement from the PBC Example in the GTS-VL

on the GTS output of the simulation for the first execution path of the example, from

Fig. 12. The right side of the figure is the syntax tree of the requirement in the textual

representation, consisting of 𝜏’s and 𝛿’s, which are also structured in syntax trees of

all the system, process and action blocks with temporal properties. Such trees gener-

ate severe complexity during analysis and verification processes of the requirement in

23

the form of textual representation. The left side of the figure is the final result that

SAVE/GTS-VLT generates at the end of the analysis and verification process for

GTS-VL over the simulation output on GTS. It drastically simplifies the complexity,

as Table 1 shows. In general, it is well known that the visual method for communica-

tion of information is better than the textual method [15].

5 SAVE

SAVE is a suite of tools to specify and analyze the IoT systems with dTP-Calculus. It

is developed on the ADOxx Meta-Modeling Platform. SAVE consists of basic five

components: Specifier, Execution Model Generator (EMG), Simulation, Analyzer and

Verifier. Specifier is a tool to specify the IoT systems with dT-Calculus, visually in

the diagrammatic representations. EMG is a generator to construct all the possible

execution paths for the system specified in Specifier. Simulation is the main engine to

execute each execution path selected from the execution model in EMG. Analyzer

and Verifier are tools to analyze and verify the safety requirements of the system

specified in GTS-VL. The basic tool of SAVE/GTS-VLT consists of these two com-

ponents. All the figures shown in the paper are the snapshots of SAVE/GTS-VLT

generated for the PBC Example. The SAVE tool is an open SW that has been devel-

oped as a project within the Open Models Laboratory (OMiLAB) [16], an open envi-

ronment for the conceptualization of domain-specific conceptual modeling languages

[17]. The tool can be downloaded with a manual for the example [18].

6 Conclusion

This paper presented a visual method to specify and verify geo-temporal requirements

for dT-Calculus, based on GTS-VL. Further SAVE/GTS-VLT was developed to

demonstrate the feasibility of the method, based on the ADOxx Meta-Modeling Plat-

form. With the tool, a small example, PBC, was selected for applicability of the

method in steps by generating all necessary artefacts for the example: ITL and ITS

views, GTS simulation output, GTS-VL requirements. The method with the tool may

be considered to be one of the most innovative approaches to specify and verify the

operation and safety requirements of Smart IoT Systems. The future research will

include development of requirements analysis and verification methods for Smart IoT

examples in field for Industry 4.0 in order to show its efficiency and effectiveness.

Acknowledgment

This work was supported by Basic Science Research Programs through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education(2010-

0023787), Space Core Technology Development Program through the National Re-

search Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future

Planning(NRF-2014M1A3A3A02034792), Basic Science Research Program through

the National Research Foundation of Korea(NRF) funded by the Ministry of Educa-

24

tion(NRF-2015R1D1A3A01019282), and Hyundai NGV, Korea. and Research Fund

from Chonbuk National University (2018~2019).

References

1. K. Rob. The real-time city? Big data and smart urbanism. GeoJournal. vol 79.

Springer. 2014.

2. Y. Choe, et al. Process Model to Predict Nondeterministic Behavior of IoT Systems.

The 11th IFIP WG 8.1 working conference on the Practice of Enterprise Modelling

(PoEM). 2018. pp.1-12.

3. Y. Choe, et al. SAVE: an environment for visual specification and verification of

IoT. IEEE 20th International Enterprise Distributed Object Computing Workshop

(EDOCW). 2016. pp.1-8.

4. L. Cardelli, et al. Mobile Ambients. In International Conference on Foundations of

Software Science and Computation Structure. Springer. 1998. pp.140-155.

5. J. On, et al. A Study on Scheduler Based on CARDMI Process Algebra for Auto-

mated Control of Emergency Medical System. Proceedings of the Korean Infor-

mation Science Society Conference. Korean Institute of Information Scientists and

Engineers. 2008. pp.65-70.

6. J. On. et al. A graphical language to integrate process algebra and state machine

views for specification and verification of distributed real-time systems. IEEE 36th

Annual Computer Software and Applications Conference Workshops. 2012.

pp.218-223.

7. Y. Choe, et al. dT-Calculus: A Process Algebra to Model Timed Movements of

Processes. International Journal of Computers. 2017. pp.53-62.

8. Smullyan, Raymond R. First-order logic. Springer Science & Business Media. Vol

43. 2012.

9. Y. Choe, et al. A Dual Method to Model IoT Systems. International Journal of

Mathematical Models and Methods in Applied Sciences. 2016. pp.201-219.

10. Clarke, et al. Design and synthesis of synchronisation skeletons using branching

time Temporal Logic. Workshop on Logic of Programs. Springer. 1981. pp.52-71.

11. Huth, et al. Logic in Computer Science: Modelling and reasoning about systems.

Cambridge university press. 2004.

12. F. Jahanian, et al. Modechart: A specification language for real-time systems. IEEE

Transactions on Software engineering. vol 20. 1994. pp.933-947.

13. Cohn, et al. Qualitative spatial representation and reasoning with the region connec-

tion calculus. GeoInformatica. 1993. pp.275-316.

14. Frank, et al. Qualitative spatial reasoning about distances and directions in geo-

graphic space. Journal of Visual Languages and Computing. vol 3. 1992. pp.343-

371.

15. Burkhard, et al. Learning from architects: the difference between knowledge visual-

ization and information visualization. Eighth International Conference on Infor-

mation Visualisation. IEEE. 2004. pp.519-524.

25

16. Bork, et al. An Open Platform for Modeling Method Conceptualization: The

OMiLAB Digital Ecosystem. Communications of the Association for Information

Systems. vol 44. 2019. pp.673-697. https://doi.org/10.17705/1CAIS.04432.

17. Karagiannis, et al. Domain-specific conceptual modeling. Springer International

Publishing. 2016.

18. https://austria.omilab.org/psm/content/save/info

