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Abstract. We present a novel reasoning calculus for the Description
Logic SHIQ. In order to reduce the nondeterminism due to general
inclusion axioms, we base our calculus on hypertableau and hyperres-
olution calculi, which we extend with a blocking condition to ensure
termination. To prevent the calculus from generating large models, we
introduce “anywhere” pairwise blocking. Our preliminary implementa-
tion shows significant performance improvements on several well-known
ontologies. To the best of our knowledge, our reasoner is currently the
only one that can classify the original version of the GALEN terminology.

1 Introduction

Modern Description Logic reasoners, such as Pellet [10], FaCT++ [15], and
RACER [5], are typically based on tableau calculi [1, Chapter 2], which demon-
strate (un)satisfiability of a knowledge base K via a constructive search for an
abstraction of a model of K. Despite numerous optimizations of the tableau
procedure, ontologies are still encountered in practice that cannot be handled
by existing systems. This is mainly because many different models might need
to be examined, and each model might be very large [1, Chapter 3]. The for-
mer problem is due to or-branching : given a disjunctive assertion C tD(s), a
tableau algorithm nondeterministically guesses that either C(s) or D(s) holds.
To show unsatisfiability of K, every possible guess must lead to a contradiction:
if assuming C(s) leads to a contradiction, the algorithm must backtrack and
assume D(s). This can clearly result in exponential behavior. GCIs—axioms of
the form C v D—are the main source of disjunctions: to ensure that C v D
holds, a tableau algorithm adds a disjunction ¬C t D(s) to each individual s
in the model. Various absorption optimizations [1, Chapter 9][7, 14] reduce the
high degree of nondeterminism in such a procedure; however, they often fail to
eliminate all sources of nondeterminism. This may be the case even for ontologies
that can be translated into Horn clauses (such as GALEN, NCI, and SNOMED),
for which reasoning without any nondeterminism should be possible in principle.

The size of the model being constructed is determined by and-branching—
the expansion of a model due to existential quantifiers. Apart from memory
consumption problems, and-branching can increase or-branching by increasing
the number of individuals to which GCIs are applied.

In this paper, we present a reasoning calculus that addresses both sources
of complexity. We focus on the DL SHIQ; however, our calculus should be
applicable to most DLs with known tableau algorithms. A SHIQ knowledge



base is first preprocessed into DL-clauses—universally quantified implications
containing DL concepts and roles as predicates. The main inference rule for DL-
clauses is hyperresolution: an atom from the head of a DL clause is derived only if
all atoms from the clause body have been derived. On Horn clauses, this calculus
is deterministic, which eliminates all or-branching. Our algorithm can be viewed
as a hybrid of resolution and tableau, and is related to the hypertableau [2] and
hyperresolution [12] calculi.

Hyperresolution decides many first-order fragments (see, e.g., [4, 3] for an
overview). Unlike most of these fragments, SHIQ allows for cyclic GCIs of the
form C v ∃R.C, on which hyperresolution can generate infinite paths of succes-
sors. Therefore, to ensure termination, we use the pairwise blocking technique
from [6] to detect cyclic computations. Due to hyper-inferences, the soundness
and correctness proofs from [6] do not carry over to our calculus. In fact, certain
simpler blocking conditions for weaker DLs cannot be applied in a straightfor-
ward manner in our setting. To limit and-branching, we extend the blocking
condition from [6] to anywhere pairwise blocking : an individual can be blocked
by an individual that is not necessarily an ancestor. This significantly reduces
the sizes of the constructed models.

We have implemented our calculus in a new reasoner. Even with a relatively
näıve implementation, our system outperforms existing reasoners on several real-
world ontologies. For example, the deterministic treatment of GCIs significantly
reduces the classification time for the NCI ontology. Furthermore, the pairwise
anywhere blocking strategy seems to be very effective in limiting model sizes.
To the best of our knowledge, our reasoner is currently the only one that can
classify the original version of the GALEN terminology.

2 Algorithm Overview

To see how GCIs can increase or-branching and thus cause performance prob-
lems, consider the following knowledge base K1:

T1 = {∃R.A v A}
A1 = {¬A(a0), R(a0, b1), R(b1, a1), . . . , R(an−1, bn), R(bn, an), A(an)}(1)

To satisfy the GCI, a tableau algorithm derives (∀R.¬A tA)(ai), 0 ≤ i ≤ n and
(∀R.¬A tA)(bj), 1 ≤ j ≤ n. Assuming that ai are processed before bj , the al-
gorithm derives ∀R.¬A(ai), 0 ≤ i ≤ n and ¬A(bi), 1 ≤ i ≤ n, after which it de-
rives ∀R.¬A(bi), 1 ≤ i ≤ n− 1 and ¬A(ai), 1 ≤ i ≤ n. The ABox now contains
a contradiction on an, so the algorithm flips its guess on bn−1 to A(bn−1). This
generates a contradiction on bn−1, so the algorithm backtracks from all guesses
for bi. Next, the guess on an is changed to A(an) and the work for all bi is re-
peated. This also leads to a contradiction, so the algorithm must revise its guess
for an−1; but then, two guesses are again possible for an. In general, after revis-
ing a guess for ai, all possibilities for aj , i < j ≤ n, must be reexamined, which
results in exponential behavior. Note that none of the standard backtracking op-
timizations [1, Chapter 9] help us avoid this problem. Namely, the problem arises



because the order in which the individuals are processed makes the guesses on ai

independent from the guesses on aj , i 6= j. It is difficult to estimate in advance
which order is optimal; in fact, the processing order is typically determined by
implementation side-effects (such as the data structures used to store K).

The GCI ∃R.A v A is not inherently nondeterministic: it is equivalent to
the Horn clause ∀x, y : [R(x, y) ∧A(y) → A(x)]. By hyperresolution, we derive
the facts A(bn), A(an−1), . . . , A(a0), and eventually we drive a contradiction on
a0. These inferences are deterministic, so we can conclude that K1 is unsatis-
fiable without any backtracking. This example suggests that the way tableau
algorithms handle GCIs can be “unnecessarily” nondeterministic.

Absorption [1, Chapter 9] reduces the nondeterminism introduced by GCIs.
If possible, it rewrites GCIs as B v C with B an atomic concept; then, during
reasoning, it derives C(s) only if the ABox contains B(s). This localizes the
applicability of the rewritten GCIs. Absorption has been extended to binary
absorption [7], which rewrites a GCI to B1 uB2 v C, and to role absorption [14],
which rewrites a GCI to ∃R.> v C. Note, however, that the axiom ∃R.A v A
cannot be absorbed directly. It can be absorbed if it is rewritten as A v ∀R−.A.
In practice, it is often unclear in advance which combination of transformation
and absorption techniques will yield the best results. Therefore, implemented
absorption algorithms are guided primarily by heuristics.

Our algorithm can be seen as a generalization of absorption. It first trans-
lates GCIs into DL-clauses—universally quantified implications of the form∧

Ui →
∨

Vj , where Ui are of the form R(x, y) or A(x), and Vj are of the form
R(x, y), A(x), ∃R.C(x), > n R.C(x), or x ≈ y. DL-clauses are used in hyperres-
olution inferences, which derive some Vj , but only if all Ui are matched to asser-
tions in the ABox. This calculus is quite different from the standard DL tableau
calculi. For example, it has no choose-rule for qualified number restrictions [13],
and it can handle implications such as R(x, y) → B(x) ∨A(y) (obtained from
∃R.¬A v B) that contain several universally quantified variables.

It is easy to see that and-branching can cause the introduction of infinitely
many new individuals. Consider the following (satisfiable) knowledge base K2:

T2 =
{

A1 v > 2 S.A2, . . . , An−1 v > 2 S.An, An v A1,
Ai v (B1 t C1) u . . . u (Bm t Cm) for 1 ≤ i ≤ n

}
A2 = {A1(a)}(2)

To check satisfiability of K2, a tableau algorithm builds a binary tree with each
node labeled with some Ai and an element of Π = {B1, C1} × . . .× {Bm, Cm}.
A näıve algorithm would try to construct an infinite tree, so tableau algorithms
employ blocking [6]: if a node a is labeled with the same concepts as some ancestor
a′ of a, then the existential quantifiers for a are not expanded. This ensures
termination; however, the number of elements in Π is exponential, so, with
“unlucky” guesses, the tree can be exponential in depth and doubly exponential
in total. In the best case, the algorithm can, for example, choose Bj rather than
Cj for each 1 ≤ j ≤ m. It then constructs a polynomially deep binary tree and
thus runs in exponential time.

To curb and-branching, we extend pairwise blocking [6] to anywhere pairwise
blocking, in which an individual can be blocked not only by an ancestor, but by



any individual satisfying certain ordering requirements. This reduces the worst-
case complexity of the algorithm by an exponential factor; for example, on K2,
after we exhaust all members of Π, all subsequently created individuals will be
blocked. Such blocking can sometimes also improve the best-case complexity; for
example, on K2 our algorithm can create a polynomial path and then use the
individuals from that path to block their siblings.

3 The Satisfiability Checking Algorithm

Our algorithm consists of two phases: preprocessing and inferencing.

3.1 Preprocessing

The goal of the preprocessing phase is to transform a SHIQ knowledge base
into a normalized ABox (in which all concept assertions are of the form B(s)
or > n R.B(s) and all role assertions involve only atomic roles), and a collection
of DL-clauses, which we denote as Ξ(K) in the rest of this paper. We omit the
details of the transformation due to lack of space; the complete algorithm is
described in [9] and illustrated here by example.

Our calculus does not deal with transitive roles, so we transform the SHIQ
knowledge base into an equisatisfiable ALCHIQ knowledge base using the well-
known encoding described in [8, Section 5.2]. The next problem is that concepts
in ALCHIQ axioms can occur under implicit negation. We make negation ex-
plicit by moving all concepts to the right-hand side of the implication and putting
all concepts into negation-normal form. For example, the axiom

∃R.(C uD) v ∃S.(E t F )(3)

is rewritten as follows:

> v ∀R.(¬C t ¬D) t ∃S.(E t F )(4)

It is well known that näıve clausification of ALCHIQ axioms would result in
exponential blowup. We instead apply a variant of the well-known structural
transformation [11], which replaces complex concepts with new names and in-
troduces new axioms to define these names. Our goal, however, is to obtain
Horn DL-clauses whenever possible. As discussed in [9], if we are not careful
the structural transformation can destroy the Horn-ness of an axiom. Therefore,
we modify the transformation to replace a complex concept C with either A or
¬A, where A is a fresh atomic name. The polarity of the replacement concept
is chosen such that the axiom that defines the replacement will not introduce
additional nondeterminism into the final clause set; this condition is detected
by analyzing the structure of literals within the replaced concept. Applying our
structural transformation to (4) gives us the following axioms:

> v ∀R.¬Q1 t ∃S.Q2(5)
¬Q1 v ¬C t ¬D(6)

Q2 v E t F(7)



Without complex subexpressions or implicit negation, the transformation to DL-
clauses is straightforward. Universal restrictions are rewritten using their first-
order-logic interpretations; e.g. ∀R.C is rewritten as ¬R(x, y) ∨ C(y). Negated
atoms are then moved to the antecedent of the DL-clause, and positive atoms
are moved to the consequent. The DL-clauses derived from (3) are as follows:

R(x, y) ∧Q1(y) → ∃S.Q2(x)(8)
C(x) ∧D(x) → Q1(x)(9)

Q2(x) → E(x) ∨ F (x)(10)

3.2 The Hypertableau Calculus for DL-Clauses

We now present our hypertableau calculus for deciding satisfiability ofA ∪Ξ(K).

Definition 1. Unnamed Individuals. For a set of named individuals NI , the
set of all individuals NX is inductively defined as NI ⊆ NX and, if x ∈ NX ,
then x.i ∈ NX for each integer i. The individuals in NX \NI are unnamed. An
individual x.i is a successor of x, and x is a predecessor of x.i; descendant and
ancestor are the transitive closures of successor and predecessor, respectively.

Pairwise Anywhere Blocking. A concept is blocking-relevant if it is of
the form A, > n R.A, or > n R.¬A, for A an atomic concept. The label of an
individual s and of an individual pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = {C | C(s) ∈ A and C is a blocking-relevant concept}
LA(s, t) = {R | R(s, t) ∈ A}

Let ≺ be a strict ordering (i.e., a transitive and irreflexive relation) on NX

containing the ancestor relation—that is, if s′ is an ancestor of s, then s′ ≺ s.
By induction on ≺, we assign to each individual s in A a status as follows:

– s is directly blocked by an individual s′ iff both s and s′ are unnamed, s′ is
not blocked, s′ ≺ s, LA(s) = LA(s′), LA(t) = LA(t′), LA(s, t) = LA(s′, t′),
and LA(t, s) = LA(t′, s′), for t and t′ the predecessors of s and s′, resp.

– s is indirectly blocked iff its predecessor is blocked.
– s is blocked iff it is either directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
of the form R(t, t.i), R(t.i, t), C(t.i), u ≈ t.i, and u 6≈ t.i, where t is either s or
some descendant of s, i is an integer, and u is an arbitrary individual.

Merging. The ABox mergeA(s → t) is obtained from pruneA(s) by replacing
the individual s with the individual t in all assertions.

Derivation Rules. Table 1 specifies derivation rules that, given an ABox A
and a set of DL-clauses Ξ(K), derive the ABoxes A1, . . . ,An. In the Hyp-rule,
σ is a mapping from NV to the individuals occurring in A, and σ(U) is the atom
obtained from U by replacing each variable x with σ(x).

Derivation. For a normalized ALCHIQ knowledge base K = (R, T ,A), a
derivation is a pair (T, λ) where T is a finitely branching tree and λ is a function



Table 1. Derivation Rules of the Tableau Calculus

Hyp-rule

If 1. U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn ∈ Ξ(K),
2. a mapping σ : NV → NA exists, for NA the set of individuals in A,
3. σ(Ui) ∈ A for each 1 ≤ i ≤ m,
4. σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then if n = 0, then A1 = A ∪ {⊥},
otherwise Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n.

≥-rule

If 1. > n R.C(s) ∈ A,
2. s is not blocked in A, and
3. there are no individuals u1, . . . , un such that
{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A,

then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}
where t1, . . . , tn are fresh pairwise distinct successors of s.

≈-rule
If 1. s ≈ t ∈ A and

2. s 6= t
then A1 := mergeA(s → t) if t is named or if s is a descendant of t,

A1 := mergeA(t → s) otherwise.

⊥-rule
If 1. s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A and

2. ⊥ 6∈ A
then A1 := A ∪ {⊥}.

ar(R, s, t) =


R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S−

that labels the nodes of T with ABoxes such that ( i) λ(ε) = A for ε the root of
the tree, and ( ii) for each node t, if one or more derivation rules are applicable
to λ(t) and Ξ(K), then t has children t1, . . . , tn such that λ(t1), . . . , λ(tn) are
the result of applying one (arbitrarily chosen) applicable rule to λ(t) and Ξ(K).

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.

In [6], the successor relation is encoded using role arcs, which point only
from predecessors to successors. Since our ABoxes contain only atomic roles,
role arcs can point in both directions, so we encode the successor relation in
the individuals. The ordering ≺ ensures that there are no cyclic blocks, so all
successors of nonblocked individuals have been constructed. Ancestor pairwise
blocking from [6] is obtained if ≺ is exactly the descendant relation.

Pruning prevents infinite loops of merge-create rule applications—the so-
called “yo-yo” effect. Intuitively, merging ensures that no individual “inherits”
successors through merging. In [6], the successors are not physically removed,
but are marked as “not present” by setting their edge labels to ∅. This has
exactly the same effect as pruning.

The relationship between our new calculus and knowledge base satisfiability
is given by the following theorem:

Theorem 1. A SHIQ knowledge base K is satisfiable if and only if each deriva-
tion from K′ = Ξ(K) contains a leaf node t such that λ(t) is clash-free; further-
more, the construction of each such derivation terminates.



Table 2. Results of Performance Evaluation

Ontology HT HT-anc Pellet FaCT++ Racer

NCI 8 s 9 s 44 min 32 s 36 s
GALEN original 44 s — — — —

GALEN simplified 7 s 104 s — 859 s —

4 Implementation

Based on the calculus from Section 3, we have implemented a prototype DL
reasoner.1 Currently, it can only handle Horn DL-clauses—our main goal was
to show that significant performance improvements can be gained by exploiting
the deterministic nature of many ontologies.

To classify a knowledge base K, we run our algorithm on Ki = K ∪ {Ci(ai)}
for each concept Ci, obtaining an ABox Ai. If D(ai) ∈ Ai and D(ai) was de-
rived without making any nondeterministic choices, then K |= Ci v D. Since our
test ontologies are translated to Horn DL-clauses on which our algorithm is de-
terministic, D(ai) ∈ Ai iff K |= Ci v D. Thus, we can classify K with a linear
number of calls to our algorithm. This optimization is also applicable in standard
tableau calculi; the nondeterministic handling of GCIs, however, diminishes its
value. We also developed an optimization of anywhere blocking which caches the
signatures of unblocked nodes in completed models and uses them as blocking
candidates in new models; full details can be found in [9].

Table 2 shows the times that our reasoner, Pellet 1.3, FaCT++ 1.1.4, and
Racer 1.9.0 take to classify our test ontologies. To isolate the improvements
due to each of the two innovations of our algorithm, we evaluated our system
with anywhere blocking (denoted as HT), as well as with ancestor blocking [6]
(denoted as HT-anc). All ontologies are available from our reasoner’s Web page.

NCI is a relatively large (about 23000 atomic concepts) but simple ontology.
FaCT++ and RACER can classify NCI in a short time mainly due to an opti-
mization which eliminates many unnecessary tests, and the fact that all axioms
in NCI are definitional so they are handled efficiently by absorption. We con-
jecture that Pellet is slower by two orders of magnitude because it does not use
these optimizations, so it must deal with disjunctions.

GALEN has often been used as a benchmark for DL reasoning. The original
version of GALEN contains about 2700 atomic concepts and many GCIs similar
to (2). Most GCIs cannot be absorbed without any residual nondeterminism.
Thus, the ontology is hard because it requires the generation of large models with
many nondeterministic choices. Hence, GALEN has been simplified by removing
273 axioms, and this simplified version of GALEN has commonly been used
for performance testing. As Table 2 shows, only HT can classify the original
version of GALEN. In particular, anywhere blocking prevents our reasoner from
generating the same fragments of a model in different branches.

1 http://www.cs.man.ac.uk/~bmotik/HermiT/



5 Conclusion

In this paper, we presented a novel reasoning algorithm for DLs that com-
bines hyper-inferences to reduce the nondeterminism due to GCIs with anywhere
blocking to reduce the sizes of generated models. In future, we shall extend our
reasoner to handle disjunction and conduct a more comprehensive performance
evaluation. Furthermore, we shall investigate the possibilities of optimizing the
blocking condition and heuristically guiding the model construction to further
reduce the sizes of the models created. Finally, we shall try to extend our ap-
proach to the DLs SHOIQ and SROIQ, which provide the logical underpinning
of the Semantic Web ontology languages.
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