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Abstract. Enabling the Semantic Web requires solving the semantic
heterogeneity problem, for which ontology matching methods have been
proposed. These methods rely on similarity measures that are mainly
focused on terminological, structural and extensional properties of the
ontologies. Semantics rarely play a direct role on the ontology matching
process, albeit some algorithms have been proposed. On the other hand,
many ontology engineers choose representation languages that have an
underlying formal logic, providing well-defined model-theoretic seman-
tics. Since semantics are a key advantage of ontologies, we believe that
semantics-based similarity measures are crucial. In this paper, we present
a novel approach to semantic similarity.
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1 Introduction

Given the semi-anarchic organisation of the current World Wide Web, it is unre-
alistic to expect that the Semantic Web, its envisioned evolution, will not suffer
from semantic heterogeneity, which can, if it is not properly tackled, hinder its
acceptance and consequently its growth and, in the worst case, preclude its devel-
opment. Ontology matching and alignment is an area that deals with this prob-
lem by establishing relations (usually equivalence and subsumption relations)
between elements in different ontologies. According to [1], ontology alignment
techniques can be categorised in two major groups: local, which focuses on simi-
larities of individual elements and/or their relations to other elements, and global,
dealing with the whole ontology or parts of it. The local alignment techniques
are further classified as terminological, structural, extensional or semantics. Ter-
minological methods are twofold: many rely in string-matching techniques, such
as sub-string matching, Jaccard Distance, Edit Distance, etc; others use external
linguistic resources, such as dictionaries or thesauri. Structural techniques rely
on the structure of the elements, and their relations to other elements, recurring,
for example, to graph matching techniques. Extensional techniques focus on the
extensions (instances) of concepts to assess their likelihood. Finally, semantics-
based alignment approaches are aware and make use of the semantics underlying



the representation language, which enables them to resort to deduction services,
such as subsumption and consistency checking.

Similarity measures are used to assess the likelihood of elements of ontologies
or the ontologies themselves. In this paper we present our preliminary work on
defining an ontology similarity measure that is purely based in the semantics of
concepts. We should note at this point that we are committing to the notion
of semantics as defined by a formal logic system, and not as its pragmatical
meaning as approached in [2]. For the target representation language, we chose
a Description Logics formalism for mainly three reasons: it is the backbone of
the current most prominent ontology representation language for the Semantic
Web – the OWL language –, it is the most active family of languages in the
community and it provides well-defined model-theoretic semantics. Our target
representation language is ALC without roles. Although this is a rather inex-
pressive logic, we stress that this work is only preliminary and that we plan to
extend it towards more expressive languages. Note that this logic is equivalent
to propositional logic, which, inexpressive as it is, can still find application in the
real world, since it allows to describe taxonomies (web directories are examples
of this). In the following, we assume that a TBox is a set of subsumption and
equivalence axioms, that relate atomic and complex concepts. The concepts we
are considering are ⊥, >, A, C u D, C t D, ¬C, where A is a concept name,
and C and D are concepts. Their semantics are defined as usually [3]. The term
ontology is often used to refer to a number of different artifacts that may in-
clude, for example, a glossary of terms, the conceptual and coded model and
the documentation. For simplicity, in this paper we will restrict the notion of
ontology to an ALC TBox without roles. In the following, it is assumed that the
set of concepts C contained in an ontology is finite.

The paper is organised as follows: section 2 presents the theoretical under-
pinning of the work presented here, followed by a toy example demonstrating
how it works in practice. The implementation of the algorithm is the subject of
section 3. We conducted an experiment with average-sized ontologies, using the
proposed similarity measure, described in section 4. Section 5 comprises an eval-
uation and discussion of the proposed measure. We summarise related work in
section 6 and finish the paper with conclusions and future directions in section 7.

2 Theory

Given the set of possible ontologies in the language we are considering, O, our
aim is to define a similarity measure σ : O × O → [0, 1], which is purely based
on semantics. This similarity measure is required to take the highest value for
equivalent ontologies, i.e. given three ontologies T1, T2 and T3, if T2 ≡ T3:1

1. σ(T1, T2) = σ(T1, T3).
2. σ(T2, T3) = 1.

1 Assume that T1 ≡ T2 is equivalent to T1 |= T2 and T2 |= T1.



Our approach starts by considering a simple version of the aimed similarity
function, defined as follows:

σ′(T1, T2) =

1 if T1 ≡ T2

0.5 else if T1 |= T2 or T2 |= T1

0 otherwise .
(1)

This similarity function is not sufficiently discriminative, which is due to the
fact that the definition of the entailment operator requires every model of T1

to be a model of T2 so that T1 |= T2. What we wish to achieve is a similarity
operator that is a function of the quantity of models of T1 and T2. However, the
amount of models of an ontology is usually infinite. Our approach is to consider
a kind of Herbrand interpretation to get around this problem, but instead of
redefining the whole logic system, as it is done with Herbrand logic to deal with
Herbrand models, we choose to define syntactic elements (concepts), rather than
semantic ones (interpretations). Consider the following definitions.

Definition 1 (Characteristic Concept). Let C be a set of DL concept names.
A characteristic concept wrt C is a concept conjunction of the form C1u . . .uCn,
where Ci is either A or ¬A, with A ∈ C, n = |C|, and for every i 6= j, Ci 6= Cj

and Ci 6= ¬Cj. ζ(C) is the set of all possible characteristic concepts wrt C.

Definition 2 (Characteristic Disjunction and Axiom). Let C be a set of
DL concept names and S ⊆ ζ(C). The characteristic disjunction of S, U(S),
is the concept

⊔
C∈S C. The characteristic axiom of S, θ(U(S)), is the axiom

> v U(S).

Definition 3 (Characteristic Acceptance Set). Let T be an ontology con-
taining the set of DL concept names C. The characteristic acceptance set of T ,
written Z(T ), is such that Z(T ) ⊆ ζ(C) and T ≡ θ(Z(T )).

In other words, a characteristic concept wrt a set of concept names is one of
the most specific concepts that is possible to build from them. The characteristic
disjunction is the concept disjunction of all the characteristic concepts. Finally,
the characteristic acceptance set of an ontology is the set of all characteristic
concepts consistent in that ontology. We should note that the characteristic dis-
junction can also be interpreted as a formula in the disjunctive normal form
(DNF). Although normal forms are usually very large, we show how to circum-
vent this in section 3. Note that the elements of the characteristic acceptance set
can be thought of as Herbrand models (with an arbitrary constant). Since the
similarity measure we present is heavily based on the characteristic acceptance
set, the following lemmas must hold.

Lemma 1. Let T be a consistent ontology containing the DL concept names C.
Z(T ) exists and is unique.

Lemma 2. Let T1 and T2 be consistent ontologies containing the concepts C.

i. T1 |= T2 iff Z(T1) ⊆ Z(T2);



ii. T1 ≡ T2 iff Z(T1) = Z(T2).

The proofs of these lemmas can be found in [4]. The acceptance set depends
on the number of models of the ontology, since it is the set of most specific
consistent concepts in the ontology (i.e., for which there are at least one model).
Given these definitions, we are now able to expand the definition of our similarity
measure.

Definition 4 (Semantic Similarity). Let T1 and T2 be consistent ontologies
containing the concepts C. Let Z1 = Z(T1) and Z2 = Z(T2). The semantic
similarity measure σ : O ×O → [0, 1] is defined as follows:

σ(T1, T2) = 1− (|Z1 − Z2|+ |Z2 − Z1|)/2|C| . (2)

Intuitively, equation 2 measures the accordance of characteristic concepts
between both ontologies.

Theorem 1. Let T1, T2 and T3 be consistent ontologies containing the DL con-
cept names C. If T2 ≡ T3 then σ(T1, T2) = σ(T1, T3) (i.e., σ is purely based on
semantics).

Proof. The result follows immediately from Lemma 2.

Example 1. Consider the following ontologies:

T1 T2

¬Male v Female Person v Male t Female
Man

.= Person uMale Man
.= Person uMale

Woman
.= Person u Female Female

.= ¬Male
MaleCat

.= Cat uMale Woman
.= Person u ¬Man

MaleCat v Cat

Although similar, these two ontologies display subtle differences. In particu-
lar, Male or Female are necessary in T1 (each individual has to be either one or
the other, or both), but in T2 the definition is stricter: each individual is exclu-
sively one or the other. Furthermore, in T2 we define Woman as a Person and not
a Man. In both ontologies, the concept of Man is defined as the intersection of
Person and Male, but in T1, some members of Man can also be Female. However,
in T2 it is forbidden for a Male to be Female, so it restricts the concept of Man
to individuals who are Male and, consequently, not Female. Finally, MaleCat’s
definition in T2 is incomplete wrt T1.

Table 1 shows the Z(T1) and Z(T2) sets. Each row is a concept name and
each column is a characteristic concept, in such a way that if +(resp. −) is in
the intersection of a concept name C and a characteristic concept D, then C
appears in D as a positive (resp. negative) literal.

As can be seen from the table, |Z1 −Z2| = |Z2 −Z1| = 4. Equation 2 yields:

σ(T1, T2) = 1− (|Z1 − Z2|+ |Z2 − Z1|)/2|C| = 1− (4 + 4)/128 = 93.75% .



Table 1. The characteristic acceptance sets for T1 and T2.

Concept Z1 − Z2 Z1 ∩ Z2 Z2 − Z1

Man + − − + + + − − − − − − − − + −
Male + + + + + + − − − − + + − − + +

Person + − − + + + + + − − − − − + + −
Cat + + − − + − − + − + − + + + + +

Female + + + + − − + + + + − − + + − −
Woman + − − + − − + + − − − − − + − −
MaleCat + + − − + − − − − − − + + + − −

3 Implementation

A naive implementation of this theory could potentially be very inefficient, since
Z(T ) grows exponentially in proportion to |C|. However, we only need the size
of a sub-set of Z(T ). Given that the characteristic disjunction of a sub-set of
Z(T ) is equivalent to a DNF formula, we can use #SAT, which computes the
size of the set.

Given two ontologies T1 and T2, our implementation starts by computing the
concepts C1 and C2 such that T1 ≡ > v C1 and T2 ≡ > v C2. The purpose
is to count the characteristic concepts that are subsumed by C1 u C2 (i.e., that
are both in Z(T1) and Z(T2)) and the ones that are subsumed by ¬C1 u ¬C2

(i.e., that are neither in Z(T1) nor Z(T2)). To achieve this, we represent the
concept C1uC2t¬C1u¬C2 as a CNF formula and feed it to a #SAT solver. To
transform the concept into CNF we use the Definitional CNF Transformation
algorithm (CNF with naming). Note that the following holds:

σ(T1, T2) = mc(cnf(C1 u C2 t ¬C1 u ¬C2))/2|C| , (3)

where mc is the model count and cnf is the CNF representation of the formula.
To perform model counting we use the relsat tool [5]. We should note that the
computation is not performed exactly as defined in equation 3. We observed that
relsat performed considerably faster using the following equivalent equation:

σ(T1, T2) =
(
(2|C| −mc(cnf(C1)))−mc(cnf(C2)) + 2×mc(cnf(C1 u C2))

)
/2|C| .

4 Experiment

In this experiment, we were aiming at evaluating our similarity measure against
an intuition of similarity. This measure is only applicable to ontologies sharing
the same concept names, but the lack of such ontologies thwarts the direct
employment of the measure. It is thus necessary to map a set of ontologies in
the same domain. Then, the set of concepts involved in the mapping are cropped,
so that the ontologies that are to be compared contain the same set of concept
names.



As dataset we used three ontologies in the cooking domain. The first one is
called OntoChefGS (OGS) and can be seen as a gold standard, as its develop-
ment was carried out more zealously and by a bigger team than the others [6].
The other two, OntoChef1 and OntoChef2 (O1 and O2), were developed by
students at an undergraduate course on Knowledge Representation. The selec-
tion of these ontologies was based on their correctness and thoroughness. Many
contained axioms such as Preparation v Recipe, using subsumption incorrectly
and were ruled out. The ontologies were required to define at least: recipes, mea-
surements, (kitchen) tools and ingredients/food, so we ruled out the ones that
were not sufficiently thorough on (or completely neglected) these topics. Figure 1
shows a section of each ontology. O1 has 49 concept names, while O2 has 167
and OGS has 571.

OntoChef1 OntoChef2 OntoChefGS

Fig. 1. A relevant part of the ontologies.

Despite obvious dissimilarities, there is an overlap of concepts in the ontolo-
gies. For example, both O1 and O2 characterise dishes as Recipes, while in OGS

these are subsumed by KindOfDish, which intuitively makes more sense. Also,
in OGS , Salad is subsumed by Starters, but in O1 and O2 they are at the same
level as the other kinds of dishes, which shows that even the gold standard can
be (and usually is) less than perfect, since salads are not necessarily starters.

The results of applying the similarity measure are as follows:

σ(O1, O2) = 98.1134%, σ(O1, OGS) = 94.8180%, σ(O2, OGS) = 94.0139%

5 Evaluation and Discussion

Although it is not clear from figure 1 that these ontologies are as similar as
assessed by the proposed measure, their cropped sections display many simi-
larities. Thus, we can say that the measure is on a par with our intuition of
similarity. We can also observe that when a set of values is available, comparing
the different values is a reasonable way to establish which ontologies are more
or less similar to an ontology. In the previous section we observed that the two
ontologies built by the undergraduate students were more similar, which is an
intuitive outcome. This is mostly due to the fact that each kind of dish is con-
sidered as a Recipe in O1 and O2, and also that the kinds of Ingredient in these
ontologies are considered as Food in OGS . Furthermore, the similarity between
O1 and OGS is slightly higher than the similarity between O2 and OGS . This



happens mainly because Cup, TeaSpoon and SoupSpoon are represented in O1

as volume measurement units and in O2 they are tools.
A possible use-case we envision for our similarity measure is the automatic

assessment of a learnt ontology against a gold standard, assuming the learnt
ontology has the same concepts as the gold standard, or a sub-set of them. Also,
our measure could be used in an ontology merging system that would search an
ontology library for similar ontologies and propose extending the source ontology
with axioms and concepts from the most similar ontologies.

In [7], the authors present a set of reasonable criteria for assessing the quality
of a similarity measure. It can be shown that our measure respects the propor-
tional error effect and the usage of interval criteria. It is also worth mentioning
that the measure is, indeed, a similarity measure as it is usually defined (e.g. [8]).

Although our implementation is based on #SAT, which is NP-Hard, the
use of heuristics boost the efficiency of the #SAT solvers, and can deliver results
for ontologies containing more than 500 concepts, in less than 10 seconds. We
consider this to be acceptable.

6 Related Work

Some alignment algorithms and tools have been developed, many of which are
described in [1]. In this survey it is mentioned that only 4 out of the 21 systems
analysed rely directly on semantic properties of the ontologies: S-Match [9],
Buster [10], Chimarae [11] and KILT [12]. There are also approaches to simi-
larity in DL formalisms, such as [13]. In this work, Hu et al. present a method
for calculating distances between concepts based on their signatures. A concept
signature is the set of elements that a concept is dependent of, which is deter-
mined using tableaux-like reasoning rules. Their approach starts by computing
the signatures of concepts and counting the times each element (atomic concept
and role) appears in the signature and fine-tuning it using information retrieval
techniques. They define the distance between ontologies by aggregating the dis-
tances between their different components. Herein lies an advantage of their
work: they define similarity on many levels; our work focuses on ontologies as
wholes. An advantage of our work is that our measure is bounded between 0 and
1, as opposed to their work which can yield any (possibly negative) number, and
thus cannot be strictly considered as a similarity measure since it does not hold
the positive definiteness condition. Other work in DL similarity can be found
in [8, 14, 15].

7 Conclusions and Future Work

In this paper we present a semantic similarity measure for a sub-set of the ALC
Description Logic. We show some properties of the measure, how it can be ap-
plied to average-sized ontologies and that the results yielded roughly correspond
to our intuitive notion of similarity.



In the future, we would like to tackle the efficiency and expressiveness prob-
lems. A formal analysis of the algorithm should be done in order to provide
a deeper understanding of the limitations of the current implementation. We
would like to add the possibility of having a weighing factor in the form of a
probability distribution over concepts. Finally, we should apply it to a use-case,
namely in the automatic assessment of learnt ontologies against a gold standard.
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